A059201
Number of T_0-covers of a labeled n-set.
Original entry on oeis.org
1, 1, 4, 96, 31692, 2147001636, 9223371991763269704, 170141183460469231473432887375376674952, 57896044618658097711785492504343953920509909728243389682424010192567186540224
Offset: 0
The version with empty edges allowed is
A326939.
The non-covering version is
A326940.
BII-numbers of T_0 set-systems are
A326947.
The same with connected instead of covering is
A326948.
-
Table[Sum[StirlingS1[n + 1, k]*2^(2^(k - 1) - 1), {k, 0, n + 1}], {n,0,5}] (* G. C. Greubel, Dec 28 2016 *)
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 13 2019 *)
A245567
Number of antichain covers of a labeled n-set such that for every two distinct elements in the n-set, there is a set in the antichain cover containing one of the elements but not the other.
Original entry on oeis.org
2, 1, 1, 5, 76, 5993, 7689745, 2414465044600, 56130437141763247212112, 286386577668298408602599478477358234902247
Offset: 0
For n = 0, a(0) = 2 by the antisets {}, {{}}.
For n = 1, a(1) = 1 by the antiset {{1}}.
For n = 2, a(2) = 1 by the antiset {{1},{2}}.
For n = 3, a(3) = 5 by the antisets {{1},{2},{3}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}.
Cf.
A000372 (Dedekind numbers),
A006126 (Number of antichain covers of a labeled n-set).
Sequences counting and ranking T_0 structures:
A309615 (covering set-systems closed under intersection),
A319559 (unlabeled set-systems by weight),
A319637 (unlabeled covering set-systems),
A326939 (covering sets of subsets),
A326943 (covering sets of subsets closed under intersection),
A326944 (covering sets of subsets with {} and closed under intersection),
A326945 (sets of subsets closed under intersection),
A326947 (BII-numbers of set-systems),
A326949 (unlabeled sets of subsets),
A326959 (set-systems closed under intersection),
A327013 (unlabeled covering set-systems closed under intersection),
A327016 (BII-numbers of topologies).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
A326964
Number of connected set-systems covering a subset of {1..n}.
Original entry on oeis.org
1, 2, 7, 112, 32253, 2147316942, 9223372023968335715, 170141183460469231667123699322514272668, 5789604461865809771178549250434395393752402807429031284280914691514037561273
Offset: 0
The a(0) = 1 through a(2) = 7 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
Covering sets of subsets are
A000371.
The BII-numbers of connected set-systems are
A326749.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Length[csm[#]]<=1&]],{n,0,4}]
Showing 1-3 of 3 results.
Comments