A039749 Erroneous version of A001930.
1, 1, 3, 9, 32
Offset: 0
Keywords
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
From _Gus Wiseman_, Aug 01 2019: (Start) The a(3) = 29 topologies are the following (empty sets not shown): {123} {1}{123} {1}{12}{123} {1}{2}{12}{123} {1}{2}{12}{13}{123} {2}{123} {1}{13}{123} {1}{3}{13}{123} {1}{2}{12}{23}{123} {3}{123} {1}{23}{123} {2}{3}{23}{123} {1}{3}{12}{13}{123} {12}{123} {2}{12}{123} {1}{12}{13}{123} {1}{3}{13}{23}{123} {13}{123} {2}{13}{123} {2}{12}{23}{123} {2}{3}{12}{23}{123} {23}{123} {2}{23}{123} {3}{13}{23}{123} {2}{3}{13}{23}{123} {3}{12}{123} {3}{13}{123} {1}{2}{3}{12}{13}{23}{123} {3}{23}{123} (End)
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],DeleteCases[Intersection@@@Tuples[#,2],{}]]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 shows the unlabeled posets with <= 4 points. From _Gus Wiseman_, Aug 14 2019: (Start) Also the number of T_0 topologies with n points. For example, the a(0) = 1 through a(3) = 19 topologies are: {} {}{1} {}{1}{12} {}{1}{12}{123} {}{2}{12} {}{1}{13}{123} {}{1}{2}{12} {}{2}{12}{123} {}{2}{23}{123} {}{3}{13}{123} {}{3}{23}{123} {}{1}{2}{12}{123} {}{1}{3}{13}{123} {}{2}{3}{23}{123} {}{1}{12}{13}{123} {}{2}{12}{23}{123} {}{3}{13}{23}{123} {}{1}{2}{12}{13}{123} {}{1}{2}{12}{23}{123} {}{1}{3}{12}{13}{123} {}{1}{3}{13}{23}{123} {}{2}{3}{12}{23}{123} {}{2}{3}{13}{23}{123} {}{1}{2}{3}{12}{13}{23}{123} (End)
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&UnsameQ@@dual[#]&&SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 (or 2nd. ed., Fig. 3.1, p. 243) shows the unlabeled posets with <= 4 points. From _Gus Wiseman_, Aug 14 2019: (Start) Also the number of unlabeled T_0 topologies with n points. For example, non-isomorphic representatives of the a(4) = 16 topologies are: {}{1}{12}{123}{1234} {}{1}{2}{12}{123}{1234} {}{1}{12}{13}{123}{1234} {}{1}{12}{123}{124}{1234} {}{1}{2}{12}{13}{123}{1234} {}{1}{2}{12}{123}{124}{1234} {}{1}{12}{13}{123}{124}{1234} {}{1}{2}{12}{13}{123}{124}{1234} {}{1}{2}{12}{13}{123}{134}{1234} {}{1}{2}{3}{12}{13}{23}{123}{1234} {}{1}{2}{12}{13}{24}{123}{124}{1234} {}{1}{12}{13}{14}{123}{124}{134}{1234} {}{1}{2}{3}{12}{13}{23}{123}{124}{1234} {}{1}{2}{12}{13}{14}{123}{124}{134}{1234} {}{1}{2}{3}{12}{13}{14}{23}{123}{124}{134}{1234} {}{1}{2}{3}{4}{12}{13}{14}{23}{24}{34}{123}{124}{134}{234}{1234} (End)
For n = 0, the empty collection and the collection containing the empty set only are both valid. For n = 1, the 2^(2^1)=4 possible collections are also all closed under union and intersection. For n = 2, there are only 3 invalid collections, namely the collections containing both {1} and {2} but not both {1,2} and the empty set. Hence there are 2^(2^2)-3 = 13 valid collections. From _Gus Wiseman_, Jul 31 2019: (Start) The a(0) = 2 through a(4) = 13 sets of sets: {} {} {} {{}} {{}} {{}} {{1}} {{1}} {{},{1}} {{2}} {{1,2}} {{},{1}} {{},{2}} {{},{1,2}} {{1},{1,2}} {{2},{1,2}} {{},{1},{1,2}} {{},{2},{1,2}} {{},{1},{2},{1,2}} (End)
Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *) A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]]; a[n_] := 1 + Sum[Binomial[n, i]*Binomial[i, i - d]*A000798[[d + 1]], {d, 0, n}, {i, d, n}]; a /@ Range[0, Length[A000798] - 1] (* Jean-François Alcover, Dec 30 2019 *)
import math # Sequence A000798 topo = [1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203] def nCr(n, r): return math.factorial(n) // (math.factorial(r) * math.factorial(n-r)) for n in range(len(topo)): ans = 1 for d in range(n+1): for i in range(d, n+1): ans += nCr(n,i) * nCr(i, i-d) * topo[d] print(n, ans)
The a(0) = 1 through a(2) = 7 topologies: {{}} {{}} {{}} {{},{1}} {{},{1}} {{},{2}} {{},{1,2}} {{},{1},{1,2}} {{},{2},{1,2}} {{},{1},{2},{1,2}}
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}] (* Second program: *) A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]]; a[n_] := Sum[Binomial[n, k]*A000798[[k+1]], {k, 0, n}]; a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Dec 30 2019 *)
The sequence of all finite topologies without their empty set together with their BII-numbers begins: 0: {} 1: {{1}} 2: {{2}} 4: {{1,2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 7: {{1},{2},{1,2}} 8: {{3}} 16: {{1,3}} 17: {{1},{1,3}} 24: {{3},{1,3}} 25: {{1},{3},{1,3}} 32: {{2,3}} 34: {{2},{2,3}} 40: {{3},{2,3}} 42: {{2},{3},{2,3}} 64: {{1,2,3}} 65: {{1},{1,2,3}} 66: {{2},{1,2,3}} 68: {{1,2},{1,2,3}} 69: {{1},{1,2},{1,2,3}}
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[0,100],SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&]
From _Gus Wiseman_, Aug 01 2019: (Start) Non-isomorphic representatives of the a(0) = 1 through a(3) = 19 set-systems closed under union: {} {} {} {} {{1}} {{1}} {{1}} {{1,2}} {{1,2}} {{2},{1,2}} {{1,2,3}} {{1},{2},{1,2}} {{2},{1,2}} {{3},{1,2,3}} {{1},{2},{1,2}} {{2,3},{1,2,3}} {{1},{2,3},{1,2,3}} {{3},{2,3},{1,2,3}} {{1,3},{2,3},{1,2,3}} {{2},{3},{2,3},{1,2,3}} {{2},{1,3},{2,3},{1,2,3}} {{3},{1,3},{2,3},{1,2,3}} {{1,2},{1,3},{2,3},{1,2,3}} {{2},{3},{1,3},{2,3},{1,2,3}} {{3},{1,2},{1,3},{2,3},{1,2,3}} {{2},{3},{1,2},{1,3},{2,3},{1,2,3}} {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} (End)
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}] (* Gus Wiseman, Aug 05 2019 *) A000798 = Append[Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]], 0]; a[n_] := If[n == 0, 1, Sum[ Binomial[n, k] A000798[[k+1]], {k, 0, n-1}]]; a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Jan 01 2020 *)
From _Gus Wiseman_, Aug 02 2019: (Start) Non-isomorphic representatives of the a(0) = 1 through a(3) = 14 union-closed sets of sets: {} {}{1} {}{12} {}{123} {}{2}{12} {}{3}{123} {}{1}{2}{12} {}{23}{123} {}{1}{23}{123} {}{3}{23}{123} {}{13}{23}{123} {}{2}{3}{23}{123} {}{2}{13}{23}{123} {}{3}{13}{23}{123} {}{12}{13}{23}{123} {}{2}{3}{13}{23}{123} {}{3}{12}{13}{23}{123} {}{2}{3}{12}{13}{23}{123} {}{1}{2}{3}{12}{13}{23}{123} (End)
Comments