A000798
Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.
Original entry on oeis.org
1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203
Offset: 0
From _Gus Wiseman_, Aug 01 2019: (Start)
The a(3) = 29 topologies are the following (empty sets not shown):
{123} {1}{123} {1}{12}{123} {1}{2}{12}{123} {1}{2}{12}{13}{123}
{2}{123} {1}{13}{123} {1}{3}{13}{123} {1}{2}{12}{23}{123}
{3}{123} {1}{23}{123} {2}{3}{23}{123} {1}{3}{12}{13}{123}
{12}{123} {2}{12}{123} {1}{12}{13}{123} {1}{3}{13}{23}{123}
{13}{123} {2}{13}{123} {2}{12}{23}{123} {2}{3}{12}{23}{123}
{23}{123} {2}{23}{123} {3}{13}{23}{123} {2}{3}{13}{23}{123}
{3}{12}{123}
{3}{13}{123} {1}{2}{3}{12}{13}{23}{123}
{3}{23}{123}
(End)
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 229.
- E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
- E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 243.
- Levinson, H.; Silverman, R. Topologies on finite sets. II. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 699--712, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561090 (81c:54006)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- For further references concerning the enumeration of topologies and posets see under A001035.
- G.H. Patil and M.S. Chaudhary, A recursive determination of topologies on finite sets, Indian Journal of Pure and Applied Mathematics, 26, No. 2 (1995), 143-148.
- V. I. Arnautov and A. V. Kochina, Method for constructing one-point expansions of a topology on a finite set and its applications, Bul. Acad. Stiinte Republ. Moldav. Matem. 3 (64) (2010) 67-76.
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Moussa Benoumhani and Ali Jaballah, Chains in lattices of mappings and finite fuzzy topological spaces, Journal of Combinatorial Theory, Series A (2019) Vol. 161, 99-111.
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5.
- Juliana Bowles and Marco B. Caminati, A Verified Algorithm Enumerating Event Structures, arXiv:1705.07228 [cs.LO], 2017.
- Gunnar Brinkmann and Brendan D. McKay, Posets on up to 16 points.
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179 (Table IV).
- J. I. Brown and S. Watson, The number of complements of a topology on n points is at least 2^n (except for some special cases), Discr. Math., 154 (1996), 27-39.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966 [Annotated scanned copy]
- Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32.
- E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date [Annotated scanned copy]
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- M. Erné and K. Stege, The number of partially ordered (labeled) sets, Preprint, 1989. (Annotated scanned copy)
- M. Erné and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313. [Annotated scanned copy]
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313.
- S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
- Loic Foissy, Claudia Malvenuto, and Frederic Patras, B_infinity-algebras, their enveloping algebras, and finite spaces, arXiv preprint arXiv:1403.7488 [math.AT], 2014.
- Loic Foissy, Claudia Malvenuto, and Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. .
- L. Foissy and C. Malvenuto, The Hopf algebra of finite topologies and T-partitions, arXiv preprint arXiv:1407.0476 [math.RA], 2014.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961. [Annotated scanned copy]
- S. Giraudo, J.-G. Luque, L. Mignot and F. Nicart, Operads, quasiorders and regular languages, arXiv preprint arXiv:1401.2010 [cs.FL], 2014.
- D. J. Greenhoe, Properties of distance spaces with power triangle inequalities, ResearchGate, 2015.
- J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000) no. 4, 333-341.
- Institut f. Mathematik, Univ. Hanover, Erne/Heitzig/Reinhold papers
- G. A. Kamel, Partial Chain Topologies on Finite Sets, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179.
- Dongseok Kim, Young Soo Kwon and Jaeun Lee, Enumerations of finite topologies associated with a finite graph, arXiv preprint arXiv:1206.0550[math.CO], 2012.
- M. Y. Kizmaz, On The Number Of Topologies On A Finite Set, arXiv preprint arXiv:1503.08359 [math.NT], 2015-2019.
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- D. J. Kleitman and B. L. Rothschild, The number of finite topologies, Proc. Amer. Math. Soc., 25 (1970), 276-282.
- Messaoud Kolli, Direct and Elementary Approach to Enumerate Topologies on a Finite Set, J. Integer Sequences, Volume 10, 2007, Article 07.3.1.
- Messaoud Kolli, On the cardinality of the T_0-topologies on a finite set, International Journal of Combinatorics, Volume 2014 (2014), Article ID 798074, 7 pages.
- Sami Lazaar, Houssem Sabri, and Randa Tahri, Structural and Numerical Studies of Some Topological Properties for Alexandroff Spaces, Bull. Iran. Math. Soc. (2021).
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- M. Rayburn, On the Borel fields of a finite set, Proc. Amer. Math.. Soc., 19 (1968), 885-889. [Annotated scanned copy]
- M. Rayburn and N. J. A. Sloane, Correspondence, 1974
- D. Rusin, More info and references [Broken link]
- D. Rusin, More info and references [Cached copy]
- A. Shafaat, On the number of topologies definable for a finite set, J. Austral. Math. Soc., 8 (1968), 194-198. [Annotated scanned copy]
- A. Shafaat, On the number of topologies definable for a finite set, J. Austral. Math. Soc., 8 (1968), 194-198.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- N. J. A. Sloane, Classic Sequences
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 8 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Swartz and Nicholas J. Werner, Zero pattern matrix rings, reachable pairs in digraphs, and Sharp's topological invariant tau, arXiv:1709.05390 [math.CO], 2017.
- Ivo Terek, Smooth Manifolds, Williams College (2025). See p. 6.
- Wietske Visser, Koen V. Hindriks and Catholijn M. Jonker, Goal-based Qualitative Preference Systems, 2012.
- N. L. White, Two letters to N. J. A. Sloane, 1970, with hand-drawn enclosure
- J. A. Wright, Letter to N. J. A. Sloane, Nov 21 1970, with four enclosures
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970 [Annotated scanned copy]
- J. A. Wright, Two related abstracts, 1970 and 1972 [Annotated scanned copies]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for "core" sequences
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],DeleteCases[Intersection@@@Tuples[#,2],{}]]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)
Two more terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) are from Brinkmann's and McKay's paper. -
Vladeta Jovovic, Jun 10 2007
A102896
Number of ACI algebras (or semilattices) on n generators with no annihilator.
Original entry on oeis.org
1, 2, 7, 61, 2480, 1385552, 75973751474, 14087648235707352472
Offset: 0
From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 1 through a(2) = 7 set-systems closed under union:
{} {} {}
{{1}} {{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
(End)
- G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
- Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
- P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010). [From Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010]
- E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.
- Andrew J. Blumberg, Michael A. Hill, Kyle Ormsby, Angélica M. Osorno, and Constanze Roitzheim, Homotopical Combinatorics, Notices Amer. Math. Soc. (2024) Vol. 71, No. 2, 260-266. See p. 261.
- Daniel Borchmann and Bernhard Ganter, Concept Lattice Orbifolds - First Steps, Proceedings of the 7th International Conference on Formal Concept Analysis (ICFCA 2009), 22-37.
- Jishnu Bose, Tien Chih, Hannah Housden, Legrand Jones II, Chloe Lewis, Kyle Ormsby, and Millie Rose, Combinatorics of factorization systems on lattices, arXiv:2503.22883 [math.CO], 2025. See p. 11.
- Pierre Colomb, Alexis Irlande, Olivier Raynaud and Yoan Renaud, About the Recursive Decomposition of the lattice of co-Moore Families, ICFCA 2011.
- Pierre Colomb, Alexis Irlande, Olivier Raynaud, and Yoan Renaud, Recursive decomposition tree of a Moore co-family and closure algorithm, Annals of Mathematics and Artificial Intelligence, 2013, DOI 10.1007/s10472-013-9362-x.
- Nachum Dershowitz, Mitchell A. Harris, and Guan-Shieng Huang, Enumeration Problems Related to Ground Horn Theories, arXiv:cs/0610054v2 [cs.LO], 2006-2008.
- Michel Habib and Lhouari Nourine, The number of Moore families on n = 6, Discrete Math., 294 (2005), 291-296.
- Caoilainn Kirkpatrick, Amelie el Mahmoud, Kyle Ormsby, Angélica M. Osorno, Dale Schandelmeier-Lynch, Riley Shahar, Lixing Yi, Avery Young, and Saron Zhu, Enumerating submonoids of finite commutative monoids, arXiv:2508.20786 [math.CO], 2025. See p. 16.
For set-systems closed under union:
- The case also closed under intersection is
A306445.
- Set-systems closed under overlapping union are
A326866.
- The BII-numbers of these set-systems are given by
A326875.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)
Additional comments from
Don Knuth, Jul 01 2005
a(7) from Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010
A001930
Number of topologies, or transitive digraphs with n unlabeled nodes.
Original entry on oeis.org
1, 1, 3, 9, 33, 139, 718, 4535, 35979, 363083, 4717687, 79501654, 1744252509, 49872339897, 1856792610995, 89847422244493, 5637294117525695
Offset: 0
From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 topologies:
{} {}{1} {}{12} {}{123}
{}{2}{12} {}{3}{123}
{}{1}{2}{12} {}{23}{123}
{}{1}{23}{123}
{}{3}{23}{123}
{}{2}{3}{23}{123}
{}{3}{13}{23}{123}
{}{2}{3}{13}{23}{123}
{}{1}{2}{3}{12}{13}{23}{123}
(End)
- Loic Foissy, Claudia Malvenuto, Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. .
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (but the last entry is wrong).
- M. Kolli, On the cardinality of the T_0-topologies on a finite set, Preprint, 2014.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
- J. A. Wright, personal communication.
- For further references concerning the enumeration of topologies and posets see under A000112 and A001035.
- C. M. Bender et al., Combinatorics and field theory, arXiv:quant-ph/0604164, 2006.
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5
- Gunnar Brinkmann and Brendan D. McKay, Counting unlabeled topologies and transitive relations.
- G. Brinkmann and B. D. McKay, Counting unlabeled topologies and transitive relations, J. Integer Sequences, Volume 8, 2005.
- Gunnar Brinkmann and Brendan D. McKay, Counting Unlabelled Topologies and Transitive Relations, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.1.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- S. R. Finch, Transitive relations, topologies and partial orders
- S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
- L. Foissy, C. Malvenuto, and F. Patras, B_infinity-algebras, their enveloping algebras, and finite spaces, arXiv preprint arXiv:1403.7488 [math.AT], 2014-2015.
- Misha Gavrilovich and Misha Rabinovich, The Quillen negation monoid of a category, and Schreier graphs of its action on classes of morphisms, 2024. See p. 11.
- Dongseok Kim, Young Soo Kwon and Jaeun Lee, Enumerations of finite topologies associated with a finite graph, arXiv preprint arXiv:1206.0550, 2012. - From _N. J. A. Sloane_, Nov 09 2012
- Messaoud Kolli, Direct and Elementary Approach to Enumerate Topologies on a Finite Set, J. Integer Sequences, Volume 10, 2007, Article 07.3.1.
- G. Pfeiffer, Counting Transitive Relations, preprint, 2004.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- D. Rusin, Further information and references [Broken link]
- D. Rusin, Further information and references [Cached copy]
- Henry Sharp, Jr., Quasi-orderings and topologies on finite sets, Proceedings of the American Mathematical Society 17.6 (1966): 1344-1349. [Annotated scanned copy]
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- N. J. A. Sloane, Classic Sequences
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 8 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Swartz and Nicholas J. Werner, Zero pattern matrix rings, reachable pairs in digraphs, and Sharp's topological invariant tau, arXiv:1709.05390 [math.CO], 2017.
- J. M. Tangen and N. J. A. Sloane, Correspondence, 1976-1976
- R. H. Warren, The number of topologies, Houston J. Math., 8 (No. 2, 1982), 297-301. Mentions a(4)=33. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Digraph Topology.
- R. H. Warren, The number of topologies, Houston J. Math., 8 (No. 2, 1982), 297-301. Mentions a(4)=33. [Annotated scanned copy]
- Wikipedia Topological space
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970 [Annotated scanned copy]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
The case with unions only is
A108798.
The case with intersections only is (also)
A108798.
Partial sums are
A326898 (the non-covering case).
a(8)-a(12) from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(16) from Brinkmann's and McKay's paper, sent by
Vladeta Jovovic, Jan 04 2006
A306445
Number of collections of subsets of {1, 2, ..., n} that are closed under union and intersection.
Original entry on oeis.org
2, 4, 13, 74, 732, 12085, 319988, 13170652, 822378267, 76359798228, 10367879036456, 2029160621690295, 565446501943834078, 221972785233309046708, 121632215040070175606989, 92294021880898055590522262, 96307116899378725213365550192, 137362837456925278519331211455157, 266379254536998812281897840071155592
Offset: 0
For n = 0, the empty collection and the collection containing the empty set only are both valid.
For n = 1, the 2^(2^1)=4 possible collections are also all closed under union and intersection.
For n = 2, there are only 3 invalid collections, namely the collections containing both {1} and {2} but not both {1,2} and the empty set. Hence there are 2^(2^2)-3 = 13 valid collections.
From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 2 through a(4) = 13 sets of sets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{1,2}}
{{},{1}}
{{},{2}}
{{},{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
(End)
- R. Stanley, Enumerative Combinatorics, volume 1, second edition, Exercise 3.46.
The covering case with {} is
A000798.
The case closed under union only is
A102897.
The case closed under intersection only is (also)
A102897.
The BII-numbers of these set-systems are
A326876.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)
A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
a[n_] := 1 + Sum[Binomial[n, i]*Binomial[i, i - d]*A000798[[d + 1]], {d, 0, n}, {i, d, n}];
a /@ Range[0, Length[A000798] - 1] (* Jean-François Alcover, Dec 30 2019 *)
-
import math
# Sequence A000798
topo = [1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203]
def nCr(n, r):
return math.factorial(n) // (math.factorial(r) * math.factorial(n-r))
for n in range(len(topo)):
ans = 1
for d in range(n+1):
for i in range(d, n+1):
ans += nCr(n,i) * nCr(i, i-d) * topo[d]
print(n, ans)
A102895
Number of ACI algebras or semilattices on n generators with no identity element.
Original entry on oeis.org
1, 2, 8, 90, 4542, 2747402, 151930948472, 28175295407840207894
Offset: 0
a(2) = 8: Let the points be labeled a, b and let 0 denote the empty set. We want the number of collections of subsets of {a, b} which are closed under intersection and contain the empty subset. 0 subsets: 0 ways, 1 subset: 1 way (0), 2 subsets: 3 ways (0,a; 0,b; 0,ab), 3 subsets: 3 ways (0,a,b; 0,a,ab; 0,b,ab), 4 subsets: 1 way (0,a,b,ab), for a total of 8.
From _Gus Wiseman_, Aug 02 2019: (Start)
The a(0) = 1 through a(2) = 8 sets of sets with {} that are closed under intersection are:
{{}} {{}} {{}}
{{},{1}} {{},{1}}
{{},{2}}
{{},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
(End)
- G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
- Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
- P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010)
- E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.
The connected case (i.e., with maximum) is
A102894.
The same for union instead of intersection is
A102896.
The case also closed under union is
A326878.
The BII-numbers of these set-systems (without the empty set) are
A326880.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 02 2019 *)
Additional comments from
Don Knuth, Jul 01 2005
A326876
BII-numbers of finite topologies without their empty set.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 64, 65, 66, 68, 69, 70, 71, 72, 76, 80, 81, 82, 85, 87, 88, 89, 93, 96, 97, 98, 102, 103, 104, 106, 110, 120, 121, 122, 127, 128, 256, 257, 384, 385, 512, 514, 640, 642, 1024, 1025, 1026, 1028, 1029, 1030
Offset: 1
The sequence of all finite topologies without their empty set together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
69: {{1},{1,2},{1,2,3}}
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,100],SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&]
A006058
Number of connected labeled T_4-topologies with n points.
Original entry on oeis.org
1, 1, 3, 16, 145, 2111, 47624, 1626003, 82564031, 6146805142, 662718022355, 102336213875523, 22408881211102698, 6895949927379360277, 2958271314760111914191, 1756322140048351303019576
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Herman Jamke, Table of n, a(n) for n = 0..19
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}] (* Gus Wiseman, Aug 05 2019 *)
A000798 = Append[Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]], 0];
a[n_] := If[n == 0, 1, Sum[ Binomial[n, k] A000798[[k+1]], {k, 0, n-1}]];
a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Jan 01 2020 *)
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
A326882
Irregular triangle read by rows where T(n,k) is the number of finite topologies with n points and k nonempty open sets, 0 <= k <= 2^n - 1.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 1, 0, 1, 6, 9, 6, 6, 0, 1, 0, 1, 14, 43, 60, 72, 54, 54, 20, 24, 0, 12, 0, 0, 0, 1, 0, 1, 30, 165, 390, 630, 780, 955, 800, 900, 500, 660, 240, 390, 120, 190, 10, 100, 0, 60, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Triangle begins:
1
0 1
0 1 2 1
0 1 6 9 6 6 0 1
0 1 14 43 60 72 54 54 20 24 0 12 0 0 0 1
Row n = 3 counts the following topologies:
{}{123} {}{1}{123} {}{1}{12}{123} {}{1}{2}{12}{123} {}{1}{2}{12}{13}{123}
{}{2}{123} {}{1}{13}{123} {}{1}{3}{13}{123} {}{1}{2}{12}{23}{123}
{}{3}{123} {}{1}{23}{123} {}{2}{3}{23}{123} {}{1}{3}{12}{13}{123}
{}{12}{123} {}{2}{12}{123} {}{1}{12}{13}{123} {}{1}{3}{13}{23}{123}
{}{13}{123} {}{2}{13}{123} {}{2}{12}{23}{123} {}{2}{3}{12}{23}{123}
{}{23}{123} {}{2}{23}{123} {}{3}{13}{23}{123} {}{2}{3}{13}{23}{123}
{}{3}{12}{123}
{}{3}{13}{123} {}{1}{2}{3}{12}{13}{23}{123}
{}{3}{23}{123}
-
Table[Length[Select[Subsets[Subsets[Range[n]],{k}],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4},{k,2^n}]
A326881
Number of set-systems with {} that are closed under intersection and cover n vertices.
Original entry on oeis.org
1, 1, 5, 71, 4223, 2725521, 151914530499, 28175294344381108057
Offset: 0
The a(2) = 5 set-systems:
{{},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The case also closed under union is
A000798.
The connected case (i.e., with maximum) is
A102894.
The same for union instead of intersection is (also)
A102894.
The BII-numbers of these set-systems (without the empty set) are
A326880.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&Union@@#==Range[n]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326906
Number of sets of subsets of {1..n} that are closed under union and cover all n vertices.
Original entry on oeis.org
2, 2, 8, 90, 4542, 2747402, 151930948472, 28175295407840207894
Offset: 0
The a(0) = 2 through a(2) = 8 sets of subsets:
{} {{1}} {{1,2}}
{{}} {{},{1}} {{},{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty sets is
A102894.
The case with a single covering edge is
A102895.
The case also closed under intersection is
A326878 for n > 0.
The same for intersection instead of union is (also)
A326906.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}]
Showing 1-10 of 23 results.
Comments