A306445 Number of collections of subsets of {1, 2, ..., n} that are closed under union and intersection.
2, 4, 13, 74, 732, 12085, 319988, 13170652, 822378267, 76359798228, 10367879036456, 2029160621690295, 565446501943834078, 221972785233309046708, 121632215040070175606989, 92294021880898055590522262, 96307116899378725213365550192, 137362837456925278519331211455157, 266379254536998812281897840071155592
Offset: 0
Keywords
Examples
For n = 0, the empty collection and the collection containing the empty set only are both valid. For n = 1, the 2^(2^1)=4 possible collections are also all closed under union and intersection. For n = 2, there are only 3 invalid collections, namely the collections containing both {1} and {2} but not both {1,2} and the empty set. Hence there are 2^(2^2)-3 = 13 valid collections. From _Gus Wiseman_, Jul 31 2019: (Start) The a(0) = 2 through a(4) = 13 sets of sets: {} {} {} {{}} {{}} {{}} {{1}} {{1}} {{},{1}} {{2}} {{1,2}} {{},{1}} {{},{2}} {{},{1,2}} {{1},{1,2}} {{2},{1,2}} {{},{1},{1,2}} {{},{2},{1,2}} {{},{1},{2},{1,2}} (End)
References
- R. Stanley, Enumerative Combinatorics, volume 1, second edition, Exercise 3.46.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *) A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]]; a[n_] := 1 + Sum[Binomial[n, i]*Binomial[i, i - d]*A000798[[d + 1]], {d, 0, n}, {i, d, n}]; a /@ Range[0, Length[A000798] - 1] (* Jean-François Alcover, Dec 30 2019 *)
-
Python
import math # Sequence A000798 topo = [1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203] def nCr(n, r): return math.factorial(n) // (math.factorial(r) * math.factorial(n-r)) for n in range(len(topo)): ans = 1 for d in range(n+1): for i in range(d, n+1): ans += nCr(n,i) * nCr(i, i-d) * topo[d] print(n, ans)
Formula
a(n) = 1 + Sum_{d=0..n} Sum_{i=d..n} C(n,i)*C(i,i-d)*A000798(d). (Follows by caseworking on the maximal and minimal set in the collection.)
E.g.f.: exp(x) + exp(x)^2*B(exp(x)-1) where B(x) is the e.g.f. for A001035 (after Stanley reference above). - Geoffrey Critzer, Jan 19 2024
Extensions
a(16)-a(18) from A000798 by Jean-François Alcover, Dec 30 2019