cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A000798 Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.

Original entry on oeis.org

1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203
Offset: 0

Views

Author

Keywords

Comments

From Altug Alkan, Dec 18 2015 and Feb 28 2017: (Start)
a(p^k) == k+1 (mod p) for all primes p. This is proved by Kizmaz at On The Number Of Topologies On A Finite Set link. For proof see Theorem 2.4 in page 2 and 3. So a(19) == 2 (mod 19).
a(p+n) == A265042(n) (mod p) for all primes p. This is also proved by Kizmaz at related link, see Theorem 2.7 in page 4. If n=2 and p=17, a(17+2) == A265042(2) (mod 17), that is a(19) == 51 (mod 17). So a(19) is divisible by 17.
In conclusion, a(19) is a number of the form 323*n - 17. (End)
The BII-numbers of finite topologies without their empty set are given by A326876. - Gus Wiseman, Aug 01 2019
From Tian Vlasic, Feb 23 2022: (Start)
Although no general formula is known for a(n), by considering the number of topologies with a fixed number of open sets, it is possible to explicitly represent the sequence in terms of Stirling numbers of the second kind.
For example: a(n,3) = 2*S(n,2), a(n,4) = S(n,2) + 6*S(n,3), a(n,5) = 6*S(n,3) + 24*S(n,4).
Lower and upper bounds are known: 2^n <= a(n) <= 2^(n*(n-1)), n > 1.
This follows from the fact that there are 2^(n*(n-1)) reflexive relations on a set with n elements.
Furthermore: a(n+1) <= a(n)*(3a(n)+1). (End)

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
The a(3) = 29 topologies are the following (empty sets not shown):
  {123}  {1}{123}   {1}{12}{123}  {1}{2}{12}{123}   {1}{2}{12}{13}{123}
         {2}{123}   {1}{13}{123}  {1}{3}{13}{123}   {1}{2}{12}{23}{123}
         {3}{123}   {1}{23}{123}  {2}{3}{23}{123}   {1}{3}{12}{13}{123}
         {12}{123}  {2}{12}{123}  {1}{12}{13}{123}  {1}{3}{13}{23}{123}
         {13}{123}  {2}{13}{123}  {2}{12}{23}{123}  {2}{3}{12}{23}{123}
         {23}{123}  {2}{23}{123}  {3}{13}{23}{123}  {2}{3}{13}{23}{123}
                    {3}{12}{123}
                    {3}{13}{123}        {1}{2}{3}{12}{13}{23}{123}
                    {3}{23}{123}
(End)
		

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 229.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 243.
  • Levinson, H.; Silverman, R. Topologies on finite sets. II. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 699--712, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561090 (81c:54006)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For further references concerning the enumeration of topologies and posets see under A001035.
  • G.H. Patil and M.S. Chaudhary, A recursive determination of topologies on finite sets, Indian Journal of Pure and Applied Mathematics, 26, No. 2 (1995), 143-148.

Crossrefs

Row sums of A326882.
Cf. A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057.
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],DeleteCases[Intersection@@@Tuples[#,2],{}]]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)

Formula

a(n) = Sum_{k=0..n} Stirling2(n, k)*A001035(k).
E.g.f.: A(exp(x) - 1) where A(x) is the e.g.f. for A001035. - Geoffrey Critzer, Jul 28 2014
It is known that log_2(a(n)) ~ n^2/4. - Tian Vlasic, Feb 23 2022

Extensions

Two more terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jun 10 2007

A001035 Number of partially ordered sets ("posets") with n labeled elements (or labeled acyclic transitive digraphs).

Original entry on oeis.org

1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023
Offset: 0

Views

Author

Keywords

Comments

From Altug Alkan, Dec 22 2015: (Start)
a(p^k) == 1 (mod p) and a(n + p) == a(n + 1) (mod p) for all primes p.
a(0+19) == a(0+1) (mod 19) or a(19^1) == 1 (mod 19), that is, a(19) mod 19 = 1.
a(2+17) == a(2+1) (mod 17). So a(19) == 19 (mod 17), that is, a(19) mod 17 = 2.
a(6+13) == a(6+1) (mod 13). So a(19) == 6129859 (mod 13), that is, a(19) mod 13 = 8.
a(8+11) == a(8+1) (mod 11). So a(19) == 44511042511 (mod 11), that is, a(19) mod 11 = 1.
a(12+7) == a(12+1) (mod 7). So a(19) == 171850728381587059351 (mod 7), that is, a(19) mod 7 = 1.
a(14+5) == a(14+1) (mod 5). So a(19) == 77567171020440688353049939 (mod 5), that is, a(19) mod 5 = 4.
a(16+3) == a(16+1) (mod 3). So a(19) == 122152541250295322862941281269151 (mod 3), that is, a(19) mod 3 = 1.
a(17+2) == a(17+1) (mod 2). So a(19) mod 2 = 1.
In conclusion, a(19) is a number of the form 2*3*5*7*11*13*17*19*n - 1615151, that is, 9699690*n - 1615151.
Additionally, for n > 0, note that the last digit of a(n) has the simple periodic pattern: 1,3,9,9,1,3,9,9,1,3,9,9,...
(End)
Number of rank n sublattices of the Boolean algebra B_n. - Kevin Long, Nov 20 2018
a(n) is the number of n X n idempotent Boolean relation matrices (A121337) that have rank n. - Geoffrey Critzer, Aug 16 2023
a(19) == 163279579 (mod 232792560). - Didier Garcia, Feb 06 2025

Examples

			R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of T_0 topologies with n points. For example, the a(0) = 1 through a(3) = 19 topologies are:
  {}  {}{1}  {}{1}{12}     {}{1}{12}{123}
             {}{2}{12}     {}{1}{13}{123}
             {}{1}{2}{12}  {}{2}{12}{123}
                           {}{2}{23}{123}
                           {}{3}{13}{123}
                           {}{3}{23}{123}
                           {}{1}{2}{12}{123}
                           {}{1}{3}{13}{123}
                           {}{2}{3}{23}{123}
                           {}{1}{12}{13}{123}
                           {}{2}{12}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{1}{2}{12}{13}{123}
                           {}{1}{2}{12}{23}{123}
                           {}{1}{3}{12}{13}{123}
                           {}{1}{3}{13}{23}{123}
                           {}{2}{3}{12}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

References

  • G. Birkhoff, Lattice Theory, Amer. Math. Soc., 1961, p. 4.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 427.
  • K. K.-H. Butler, A Moore-Penrose inverse for Boolean relation matrices, pp. 18-28 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • K. K. H. Butler and G. Markowsky. "The number of partially ordered sets. I." Journal of Korean Mathematical Society 11.1 (1974).
  • S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 60, 229.
  • M. Erné, Struktur- und Anzahlformeln für Topologien auf endlichen Mengen, PhD dissertation, Westfälische Wilhelms-Universität zu Münster, 1972.
  • M. Erné and K. Stege, The number of labeled orders on fifteen elements, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. 2, Problem 5.39, p. 88.

Crossrefs

Cf. A000798 (labeled topologies), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057.
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&UnsameQ@@dual[#]&&SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)

Formula

A000798(n) = Sum_{k=0..n} Stirling2(n,k)*a(k).
Related to A000112 by Erné's formulas: a(n+1) = -s(n, 1), a(n+2) = n*a(n+1) + s(n, 2), a(n+3) = binomial(n+4, 2)*a(n+2) - s(n, 3), where s(n, k) = sum(binomial(n+k-1-m, k-1)*binomial(n+k, m)*sum((m!)/(number of automorphisms of P)*(-(number of antichains of P))^k, P an unlabeled poset with m elements), m=0..n).
From Altug Alkan, Dec 22 2015: (Start)
a(p^k) == 1 (mod p) for all primes p and for all nonnegative integers k.
a(n + p) == a(n + 1) (mod p) for all primes p and for all nonnegative integers n.
If n = 1, then a(1 + p) == a(2) (mod p), that is, a(p + 1) == 3 (mod p).
If n = p, then a(p + p) == a(p + 1) (mod p), that is, a(2*p) == a(p + 1) (mod p).
In conclusion, a(2*p) == 3 (mod p) for all primes p.
(End)
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000798(k). - Tian Vlasic, Feb 25 2022

Extensions

a(15)-a(16) from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008

A001930 Number of topologies, or transitive digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 3, 9, 33, 139, 718, 4535, 35979, 363083, 4717687, 79501654, 1744252509, 49872339897, 1856792610995, 89847422244493, 5637294117525695
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 topologies:
  {}  {}{1}  {}{12}        {}{123}
             {}{2}{12}     {}{3}{123}
             {}{1}{2}{12}  {}{23}{123}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

References

  • Loic Foissy, Claudia Malvenuto, Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. .
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (but the last entry is wrong).
  • M. Kolli, On the cardinality of the T_0-topologies on a finite set, Preprint, 2014.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
  • J. A. Wright, personal communication.
  • For further references concerning the enumeration of topologies and posets see under A000112 and A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057, A001928, A001929.
The case with unions only is A108798.
The case with intersections only is (also) A108798.
Partial sums are A326898 (the non-covering case).

Extensions

a(8)-a(12) from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(16) from Brinkmann's and McKay's paper, sent by Vladeta Jovovic, Jan 04 2006

A306445 Number of collections of subsets of {1, 2, ..., n} that are closed under union and intersection.

Original entry on oeis.org

2, 4, 13, 74, 732, 12085, 319988, 13170652, 822378267, 76359798228, 10367879036456, 2029160621690295, 565446501943834078, 221972785233309046708, 121632215040070175606989, 92294021880898055590522262, 96307116899378725213365550192, 137362837456925278519331211455157, 266379254536998812281897840071155592
Offset: 0

Views

Author

Yuan Yao, Feb 15 2019

Keywords

Examples

			For n = 0, the empty collection and the collection containing the empty set only are both valid.
For n = 1, the 2^(2^1)=4 possible collections are also all closed under union and intersection.
For n = 2, there are only 3 invalid collections, namely the collections containing both {1} and {2} but not both {1,2} and the empty set. Hence there are 2^(2^2)-3 = 13 valid collections.
From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 2 through a(4) = 13 sets of sets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{1,2}}
                  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • R. Stanley, Enumerative Combinatorics, volume 1, second edition, Exercise 3.46.

Crossrefs

The covering case with {} is A000798.
The case closed under union only is A102897.
The case closed under intersection only is (also) A102897.
The BII-numbers of these set-systems are A326876.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
    a[n_] := 1 + Sum[Binomial[n, i]*Binomial[i, i - d]*A000798[[d + 1]], {d, 0, n}, {i, d, n}];
    a /@ Range[0, Length[A000798] - 1] (* Jean-François Alcover, Dec 30 2019 *)
  • Python
    import math
    # Sequence A000798
    topo = [1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203]
    def nCr(n, r):
        return math.factorial(n) // (math.factorial(r) * math.factorial(n-r))
    for n in range(len(topo)):
        ans = 1
        for d in range(n+1):
            for i in range(d, n+1):
                ans += nCr(n,i) * nCr(i, i-d) * topo[d]
        print(n, ans)

Formula

a(n) = 1 + Sum_{d=0..n} Sum_{i=d..n} C(n,i)*C(i,i-d)*A000798(d). (Follows by caseworking on the maximal and minimal set in the collection.)
E.g.f.: exp(x) + exp(x)^2*B(exp(x)-1) where B(x) is the e.g.f. for A001035 (after Stanley reference above). - Geoffrey Critzer, Jan 19 2024

Extensions

a(16)-a(18) from A000798 by Jean-François Alcover, Dec 30 2019

A326878 Number of topologies whose points are a subset of {1..n}.

Original entry on oeis.org

1, 2, 7, 45, 500, 9053, 257151, 11161244, 725343385, 69407094565, 9639771895398, 1919182252611715, 541764452276876719, 214777343584048313318, 118575323291814379721651, 90492591258634595795504697, 94844885130660856889237907260, 135738086271526574073701454370969, 263921383510041055422284977248713291
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2019

Keywords

Examples

			The a(0) = 1 through a(2) = 7 topologies:
  {{}}  {{}}      {{}}
        {{},{1}}  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Binomial transform of A000798 (the covering case).

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}]
    (* Second program: *)
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
    a[n_] := Sum[Binomial[n, k]*A000798[[k+1]], {k, 0, n}];
    a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Dec 30 2019 *)

Formula

From Geoffrey Critzer, Jul 12 2022: (Start)
E.g.f.: exp(x)*A(exp(x)-1) where A(x) is the e.g.f. for A001035.
a(n) = Sum_{k=0..n} binomial(n,k)*A000798(k). (End)

A326872 BII-numbers of connectedness systems.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 32, 33, 34, 35, 40, 41, 42, 43, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of these set-systems by number of covered vertices is given by A326870.

Examples

			The sequence of all connectedness systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  15: {{1},{2},{1,2},{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  18: {{2},{1,3}}
  19: {{1},{2},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  26: {{2},{3},{1,3}}
  27: {{1},{2},{3},{1,3}}
  32: {{2,3}}
		

Crossrefs

Connectedness systems are counted by A326866, with unlabeled version A326867.
The case without singletons is A326873.
The connected case is A326879.
Set-systems closed under union are counted by A102896, with BII numbers A326875.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    connsysQ[eds_]:=SubsetQ[eds,Union@@@Select[Tuples[eds,2],Intersection@@#!={}&]];
    Select[Range[0,100],connsysQ[bpe/@bpe[#]]&]
  • Python
    from itertools import count, islice, combinations
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen():
        for n in count(0):
            E,f = [bin_i(k) for k in bin_i(n)],0
            for i in combinations(E,2):
                if list(set(i[0])|set(i[1])) not in E and len(set(i[0])&set(i[1])) > 0:
                    f += 1
                    break
            if f < 1:
                yield n
    A326872_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Mar 07 2025

A326875 BII-numbers of set-systems that are closed under union.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 64, 65, 66, 68, 69, 70, 71, 72, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 100, 101, 102, 103, 104, 106, 108, 110, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of these set-systems by number of covered vertices is A102896.

Examples

			The sequence of all set-systems that are closed under union together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  32: {{2,3}}
  34: {{2},{2,3}}
  40: {{3},{2,3}}
  42: {{2},{3},{2,3}}
  64: {{1,2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
  69: {{1},{1,2},{1,2,3}}
  70: {{2},{1,2},{1,2,3}}
  71: {{1},{2},{1,2},{1,2,3}}
  72: {{3},{1,2,3}}
  76: {{1,2},{3},{1,2,3}}
  80: {{1,3},{1,2,3}}
  81: {{1},{1,3},{1,2,3}}
  82: {{2},{1,3},{1,2,3}}
  84: {{1,2},{1,3},{1,2,3}}
  85: {{1},{1,2},{1,3},{1,2,3}}
  86: {{2},{1,2},{1,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SubsetQ[bpe/@bpe[#],Union@@@Tuples[bpe/@bpe[#],2]]&]
  • Python
    from itertools import count, islice, combinations
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen():
        for n in count(0):
            E,f = [bin_i(k) for k in bin_i(n)],0
            for i in combinations(E,2):
                if list(set(i[0])|set(i[1])) not in E:
                    f += 1
                    break
            if f < 1:
                yield n
    A326875_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Mar 06 2025

A326882 Irregular triangle read by rows where T(n,k) is the number of finite topologies with n points and k nonempty open sets, 0 <= k <= 2^n - 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 1, 6, 9, 6, 6, 0, 1, 0, 1, 14, 43, 60, 72, 54, 54, 20, 24, 0, 12, 0, 0, 0, 1, 0, 1, 30, 165, 390, 630, 780, 955, 800, 900, 500, 660, 240, 390, 120, 190, 10, 100, 0, 60, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2019

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  1  2  1
  0  1  6  9  6  6  0  1
  0  1 14 43 60 72 54 54 20 24  0 12  0  0  0  1
Row n = 3 counts the following topologies:
{}{123} {}{1}{123}  {}{1}{12}{123} {}{1}{2}{12}{123}  {}{1}{2}{12}{13}{123}
        {}{2}{123}  {}{1}{13}{123} {}{1}{3}{13}{123}  {}{1}{2}{12}{23}{123}
        {}{3}{123}  {}{1}{23}{123} {}{2}{3}{23}{123}  {}{1}{3}{12}{13}{123}
        {}{12}{123} {}{2}{12}{123} {}{1}{12}{13}{123} {}{1}{3}{13}{23}{123}
        {}{13}{123} {}{2}{13}{123} {}{2}{12}{23}{123} {}{2}{3}{12}{23}{123}
        {}{23}{123} {}{2}{23}{123} {}{3}{13}{23}{123} {}{2}{3}{13}{23}{123}
                    {}{3}{12}{123}
                    {}{3}{13}{123}      {}{1}{2}{3}{12}{13}{23}{123}
                    {}{3}{23}{123}
		

Crossrefs

Row lengths are A000079.
Row sums are A000798.
Columns: A281774 and refs therein.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]],{k}],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4},{k,2^n}]

Extensions

Terms a(31) and beyond from Andrew Howroyd, Aug 10 2019

A326880 BII-numbers of set-systems that are closed under nonempty intersection.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 46, 47, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The enumeration of these set-systems by number of covered vertices is A326881.

Examples

			Most small numbers are in the sequence, but the sequence of non-terms together with the set-systems with those BII-numbers begins:
  20: {{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  28: {{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  36: {{1,2},{2,3}}
  37: {{1},{1,2},{2,3}}
  44: {{1,2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  48: {{1,3},{2,3}}
  49: {{1},{1,3},{2,3}}
  50: {{2},{1,3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  84: {{1,2},{1,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SubsetQ[bpe/@bpe[#],Intersection@@@Select[Tuples[bpe/@bpe[#],2],Intersection@@#!={}&]]&]
  • Python
    from itertools import count, islice, combinations
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen():
        for n in count(0):
            E,f = [bin_i(k) for k in bin_i(n)],0
            for i in combinations(E,2):
                x = list(set(i[0])&set(i[1]))
                if x not in E and len(x) > 0:
                    f += 1
                    break
            if f < 1:
                yield n
    A326880_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Mar 07 2025

A326901 Number of set-systems (without {}) on n vertices that are closed under intersection.

Original entry on oeis.org

1, 2, 6, 32, 418, 23702, 16554476, 1063574497050, 225402367516942398102
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of a set-system that is closed under intersection can be disjoint.

Examples

			The a(3) = 32 set-systems:
  {}  {{1}}    {{1}{12}}    {{1}{12}{13}}   {{1}{12}{13}{123}}
      {{2}}    {{1}{13}}    {{2}{12}{23}}   {{2}{12}{23}{123}}
      {{3}}    {{2}{12}}    {{3}{13}{23}}   {{3}{13}{23}{123}}
      {{12}}   {{2}{23}}    {{1}{12}{123}}
      {{13}}   {{3}{13}}    {{1}{13}{123}}
      {{23}}   {{3}{23}}    {{2}{12}{123}}
      {{123}}  {{1}{123}}   {{2}{23}{123}}
               {{2}{123}}   {{3}{13}{123}}
               {{3}{123}}   {{3}{23}{123}}
               {{12}{123}}
               {{13}{123}}
               {{23}{123}}
		

Crossrefs

The case with union instead of intersection is A102896.
The case closed under union and intersection is A326900.
The covering case is A326902.
The connected case is A326903.
The unlabeled version is A326904.
The BII-numbers of these set-systems are A326905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

a(n) = 1 + Sum_{k=0, n-1} binomial(n,k)*A102895(k). - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 10 2019
Showing 1-10 of 21 results. Next