cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A000798 Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.

Original entry on oeis.org

1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203
Offset: 0

Views

Author

Keywords

Comments

From Altug Alkan, Dec 18 2015 and Feb 28 2017: (Start)
a(p^k) == k+1 (mod p) for all primes p. This is proved by Kizmaz at On The Number Of Topologies On A Finite Set link. For proof see Theorem 2.4 in page 2 and 3. So a(19) == 2 (mod 19).
a(p+n) == A265042(n) (mod p) for all primes p. This is also proved by Kizmaz at related link, see Theorem 2.7 in page 4. If n=2 and p=17, a(17+2) == A265042(2) (mod 17), that is a(19) == 51 (mod 17). So a(19) is divisible by 17.
In conclusion, a(19) is a number of the form 323*n - 17. (End)
The BII-numbers of finite topologies without their empty set are given by A326876. - Gus Wiseman, Aug 01 2019
From Tian Vlasic, Feb 23 2022: (Start)
Although no general formula is known for a(n), by considering the number of topologies with a fixed number of open sets, it is possible to explicitly represent the sequence in terms of Stirling numbers of the second kind.
For example: a(n,3) = 2*S(n,2), a(n,4) = S(n,2) + 6*S(n,3), a(n,5) = 6*S(n,3) + 24*S(n,4).
Lower and upper bounds are known: 2^n <= a(n) <= 2^(n*(n-1)), n > 1.
This follows from the fact that there are 2^(n*(n-1)) reflexive relations on a set with n elements.
Furthermore: a(n+1) <= a(n)*(3a(n)+1). (End)

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
The a(3) = 29 topologies are the following (empty sets not shown):
  {123}  {1}{123}   {1}{12}{123}  {1}{2}{12}{123}   {1}{2}{12}{13}{123}
         {2}{123}   {1}{13}{123}  {1}{3}{13}{123}   {1}{2}{12}{23}{123}
         {3}{123}   {1}{23}{123}  {2}{3}{23}{123}   {1}{3}{12}{13}{123}
         {12}{123}  {2}{12}{123}  {1}{12}{13}{123}  {1}{3}{13}{23}{123}
         {13}{123}  {2}{13}{123}  {2}{12}{23}{123}  {2}{3}{12}{23}{123}
         {23}{123}  {2}{23}{123}  {3}{13}{23}{123}  {2}{3}{13}{23}{123}
                    {3}{12}{123}
                    {3}{13}{123}        {1}{2}{3}{12}{13}{23}{123}
                    {3}{23}{123}
(End)
		

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 229.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 243.
  • Levinson, H.; Silverman, R. Topologies on finite sets. II. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 699--712, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561090 (81c:54006)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For further references concerning the enumeration of topologies and posets see under A001035.
  • G.H. Patil and M.S. Chaudhary, A recursive determination of topologies on finite sets, Indian Journal of Pure and Applied Mathematics, 26, No. 2 (1995), 143-148.

Crossrefs

Row sums of A326882.
Cf. A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057.
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],DeleteCases[Intersection@@@Tuples[#,2],{}]]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)

Formula

a(n) = Sum_{k=0..n} Stirling2(n, k)*A001035(k).
E.g.f.: A(exp(x) - 1) where A(x) is the e.g.f. for A001035. - Geoffrey Critzer, Jul 28 2014
It is known that log_2(a(n)) ~ n^2/4. - Tian Vlasic, Feb 23 2022

Extensions

Two more terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jun 10 2007

A001930 Number of topologies, or transitive digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 3, 9, 33, 139, 718, 4535, 35979, 363083, 4717687, 79501654, 1744252509, 49872339897, 1856792610995, 89847422244493, 5637294117525695
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 topologies:
  {}  {}{1}  {}{12}        {}{123}
             {}{2}{12}     {}{3}{123}
             {}{1}{2}{12}  {}{23}{123}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

References

  • Loic Foissy, Claudia Malvenuto, Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. .
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (but the last entry is wrong).
  • M. Kolli, On the cardinality of the T_0-topologies on a finite set, Preprint, 2014.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
  • J. A. Wright, personal communication.
  • For further references concerning the enumeration of topologies and posets see under A000112 and A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057, A001928, A001929.
The case with unions only is A108798.
The case with intersections only is (also) A108798.
Partial sums are A326898 (the non-covering case).

Extensions

a(8)-a(12) from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(16) from Brinkmann's and McKay's paper, sent by Vladeta Jovovic, Jan 04 2006

A306445 Number of collections of subsets of {1, 2, ..., n} that are closed under union and intersection.

Original entry on oeis.org

2, 4, 13, 74, 732, 12085, 319988, 13170652, 822378267, 76359798228, 10367879036456, 2029160621690295, 565446501943834078, 221972785233309046708, 121632215040070175606989, 92294021880898055590522262, 96307116899378725213365550192, 137362837456925278519331211455157, 266379254536998812281897840071155592
Offset: 0

Views

Author

Yuan Yao, Feb 15 2019

Keywords

Examples

			For n = 0, the empty collection and the collection containing the empty set only are both valid.
For n = 1, the 2^(2^1)=4 possible collections are also all closed under union and intersection.
For n = 2, there are only 3 invalid collections, namely the collections containing both {1} and {2} but not both {1,2} and the empty set. Hence there are 2^(2^2)-3 = 13 valid collections.
From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 2 through a(4) = 13 sets of sets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{1,2}}
                  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • R. Stanley, Enumerative Combinatorics, volume 1, second edition, Exercise 3.46.

Crossrefs

The covering case with {} is A000798.
The case closed under union only is A102897.
The case closed under intersection only is (also) A102897.
The BII-numbers of these set-systems are A326876.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
    a[n_] := 1 + Sum[Binomial[n, i]*Binomial[i, i - d]*A000798[[d + 1]], {d, 0, n}, {i, d, n}];
    a /@ Range[0, Length[A000798] - 1] (* Jean-François Alcover, Dec 30 2019 *)
  • Python
    import math
    # Sequence A000798
    topo = [1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203]
    def nCr(n, r):
        return math.factorial(n) // (math.factorial(r) * math.factorial(n-r))
    for n in range(len(topo)):
        ans = 1
        for d in range(n+1):
            for i in range(d, n+1):
                ans += nCr(n,i) * nCr(i, i-d) * topo[d]
        print(n, ans)

Formula

a(n) = 1 + Sum_{d=0..n} Sum_{i=d..n} C(n,i)*C(i,i-d)*A000798(d). (Follows by caseworking on the maximal and minimal set in the collection.)
E.g.f.: exp(x) + exp(x)^2*B(exp(x)-1) where B(x) is the e.g.f. for A001035 (after Stanley reference above). - Geoffrey Critzer, Jan 19 2024

Extensions

a(16)-a(18) from A000798 by Jean-François Alcover, Dec 30 2019

A339195 Triangle of squarefree numbers grouped by greatest prime factor, read by rows.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 66, 77, 110, 154, 165, 231, 330, 385, 462, 770, 1155, 2310, 13, 26, 39, 65, 78, 91, 130, 143, 182, 195, 273, 286, 390, 429, 455, 546, 715, 858, 910, 1001, 1365, 1430, 2002, 2145, 2730, 3003, 4290, 5005, 6006, 10010, 15015, 30030
Offset: 0

Views

Author

Gus Wiseman, Dec 02 2020

Keywords

Comments

Also Heinz numbers of subsets of {1..n} that contain n if n>0, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
A019565 in its triangle form, with each row's terms in increasing order. - Peter Munn, Feb 26 2021
From David James Sycamore, Jan 09 2025: (Start)
Alternative definition, with offset = 1: a(1) = 1. For n>1 if a(n-1) = A002110(k), a(n) = prime(k+1). Otherwise a(n) is the smallest novel squarefree number whose prime factors have already occurred as previous terms.
Permutation of A005117, Squarefree version A379746. (End)

Examples

			Triangle begins:
   1
   2
   3   6
   5  10  15  30
   7  14  21  35  42  70  105  210
		

Crossrefs

A011782 gives row lengths.
A339360 gives row sums.
A008578 (shifted) is column k = 1.
A100484 is column k = 2.
A001748 is column k = 3.
A002110 is column k = 2^(n-1).
A070826 is column k = 2^(n-1) - 1.
A209862 takes prime indices to binary indices in these terms.
A246867 groups squarefree numbers by Heinz weight, with row sums A147655.
A261144 divides the n-th row by prime(n), with row sums A054640.
A339116 is the restriction to semiprimes, with row sums A339194.
A005117 lists squarefree numbers, ordered lexicographically by prime factors: A019565.
A006881 lists squarefree semiprimes.
A072047 counts prime factors of squarefree numbers.
A319246 is the sum of prime indices of the n-th squarefree number.
A329631 lists prime indices of squarefree numbers, reversed: A319247.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
Cf. A379746.

Programs

  • Maple
    T:= proc(n) option remember; `if`(n=0, 1, (p-> map(
          x-> x*p, {seq(T(i), i=0..n-1)})[])(ithprime(n)))
        end:
    seq(T(n), n=0..6);  # Alois P. Heinz, Jan 08 2025
  • Mathematica
    Table[Prime[n]*Sort[Times@@Prime/@#&/@Subsets[Range[n-1]]],{n,5}]

Formula

For n > 1, T(n,k) = prime(n) * A261144(n-1,k).
a(n) = A019565(A379770(n)). - Michael De Vlieger, Jan 08 2025

Extensions

Row n=0 (term 1) prepended by Alois P. Heinz, Jan 08 2025

A326901 Number of set-systems (without {}) on n vertices that are closed under intersection.

Original entry on oeis.org

1, 2, 6, 32, 418, 23702, 16554476, 1063574497050, 225402367516942398102
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of a set-system that is closed under intersection can be disjoint.

Examples

			The a(3) = 32 set-systems:
  {}  {{1}}    {{1}{12}}    {{1}{12}{13}}   {{1}{12}{13}{123}}
      {{2}}    {{1}{13}}    {{2}{12}{23}}   {{2}{12}{23}{123}}
      {{3}}    {{2}{12}}    {{3}{13}{23}}   {{3}{13}{23}{123}}
      {{12}}   {{2}{23}}    {{1}{12}{123}}
      {{13}}   {{3}{13}}    {{1}{13}{123}}
      {{23}}   {{3}{23}}    {{2}{12}{123}}
      {{123}}  {{1}{123}}   {{2}{23}{123}}
               {{2}{123}}   {{3}{13}{123}}
               {{3}{123}}   {{3}{23}{123}}
               {{12}{123}}
               {{13}{123}}
               {{23}{123}}
		

Crossrefs

The case with union instead of intersection is A102896.
The case closed under union and intersection is A326900.
The covering case is A326902.
The connected case is A326903.
The unlabeled version is A326904.
The BII-numbers of these set-systems are A326905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

a(n) = 1 + Sum_{k=0, n-1} binomial(n,k)*A102895(k). - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 10 2019

A326898 Number of unlabeled topologies with up to n points.

Original entry on oeis.org

1, 2, 5, 14, 47, 186, 904, 5439, 41418, 404501, 5122188, 84623842, 1828876351, 51701216248, 1908493827243, 91755916071736, 5729050033597431
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2019

Keywords

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 14 topologies:
  {}  {}     {}            {}
      {}{1}  {}{1}         {}{1}
             {}{12}        {}{12}
             {}{2}{12}     {}{123}
             {}{1}{2}{12}  {}{2}{12}
                           {}{3}{123}
                           {}{23}{123}
                           {}{1}{2}{12}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
		

Crossrefs

Partial sums of A001930.
The labeled version is A326878.

A326904 Number of unlabeled set-systems (without {}) on n vertices that are closed under intersection.

Original entry on oeis.org

1, 2, 4, 10, 38, 368, 29328, 216591692, 5592326399531792
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of such a set-system can be disjoint.
Apart from the offset the same as A193675. - R. J. Mathar, Aug 09 2019

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems:
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{1,2}}      {{1,2}}
             {{2},{1,2}}  {{1,2,3}}
                          {{2},{1,2}}
                          {{3},{1,2,3}}
                          {{2,3},{1,2,3}}
                          {{3},{1,3},{2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The covering case is A108800(n - 1).
The case with an edge containing all of the vertices is A193674(n - 1).
The case with union instead of intersection is A193674.
The labeled version is A326901.

Formula

a(n > 0) = 2 * A193674(n - 1).

A326900 Number of set-systems on n vertices that are closed under union and intersection.

Original entry on oeis.org

1, 2, 6, 29, 232, 3032, 62837, 2009408, 97034882, 6952703663, 728107141058, 109978369078580, 23682049666957359, 7195441649260733390, 3056891748255795885338, 1801430622263459795017565, 1462231768717868324127642932, 1624751185398704445629757084188, 2457871026957756859612862822442301
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of such a set-system can be disjoint.

Examples

			The a(0) = 1 through a(3) = 29 set-systems:
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{2}}        {{2}}
             {{1,2}}      {{3}}
             {{1},{1,2}}  {{1,2}}
             {{2},{1,2}}  {{1,3}}
                          {{2,3}}
                          {{1,2,3}}
                          {{1},{1,2}}
                          {{1},{1,3}}
                          {{2},{1,2}}
                          {{2},{2,3}}
                          {{3},{1,3}}
                          {{3},{2,3}}
                          {{1},{1,2,3}}
                          {{2},{1,2,3}}
                          {{3},{1,2,3}}
                          {{1,2},{1,2,3}}
                          {{1,3},{1,2,3}}
                          {{2,3},{1,2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Binomial transform of A006058 (the covering case).
The case closed under union only is A102896.
The case with {} allowed is A306445.
The BII-numbers of these set-systems are A326876.
The case closed under intersection only is A326901.
The unlabeled version is A326908.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}]
    (* Second program: *)
    A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {, }][[All, 2]];
    a[n_] := Sum[Binomial[n, k] A006058[[k + 1]], {k, 0, n}];
    a /@ Range[0, 18] (* Jean-François Alcover, Jan 01 2020 *)

Extensions

a(16)-a(18) from A006058 by Jean-François Alcover, Jan 01 2020

A326902 Number of set-systems (without {}) covering n vertices that are closed under intersection.

Original entry on oeis.org

1, 1, 3, 19, 319, 21881, 16417973, 1063459099837, 225402359008808647339
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of a set-system that is closed under intersection can be disjoint.

Examples

			The a(0) = 1 through a(3) = 19 set-systems:
  {}  {{1}}  {{1,2}}      {{1,2,3}}
             {{1},{1,2}}  {{1},{1,2,3}}
             {{2},{1,2}}  {{2},{1,2,3}}
                          {{3},{1,2,3}}
                          {{1,2},{1,2,3}}
                          {{1,3},{1,2,3}}
                          {{2,3},{1,2,3}}
                          {{1},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The case closed under union and intersection is A006058.
The case with union instead of intersection is A102894.
The unlabeled version is A108800(n - 1).
The non-covering case is A326901.
The connected case is A326903.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Inverse binomial transform of A326901. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 10 2019

A326903 Number of set-systems (without {}) on n vertices that are closed under intersection and have an edge containing all of the vertices, or Moore families without {}.

Original entry on oeis.org

0, 1, 3, 16, 209, 11851, 8277238, 531787248525, 112701183758471199051
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of such a set-system can be disjoint.
If {} is allowed, we get Moore families (A102896, cf A102895).

Examples

			The a(1) = 1 through a(3) = 16 set-systems:
  {{1}}  {{1,2}}      {{1,2,3}}
         {{1},{1,2}}  {{1},{1,2,3}}
         {{2},{1,2}}  {{2},{1,2,3}}
                      {{3},{1,2,3}}
                      {{1,2},{1,2,3}}
                      {{1,3},{1,2,3}}
                      {{2,3},{1,2,3}}
                      {{1},{1,2},{1,2,3}}
                      {{1},{1,3},{1,2,3}}
                      {{2},{1,2},{1,2,3}}
                      {{2},{2,3},{1,2,3}}
                      {{3},{1,3},{1,2,3}}
                      {{3},{2,3},{1,2,3}}
                      {{1},{1,2},{1,3},{1,2,3}}
                      {{2},{1,2},{2,3},{1,2,3}}
                      {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The case closed under union and intersection is A006058.
The case with union instead of intersection is A102894.
The unlabeled version is A193674.
The case without requiring the maximum edge is A326901.
The covering case is A326902.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],MemberQ[#,Range[n]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

a(n) = A326901(n) / 2 for n > 0. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 10 2019
Showing 1-10 of 13 results. Next