cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001930 Number of topologies, or transitive digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 3, 9, 33, 139, 718, 4535, 35979, 363083, 4717687, 79501654, 1744252509, 49872339897, 1856792610995, 89847422244493, 5637294117525695
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 topologies:
  {}  {}{1}  {}{12}        {}{123}
             {}{2}{12}     {}{3}{123}
             {}{1}{2}{12}  {}{23}{123}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

References

  • Loic Foissy, Claudia Malvenuto, Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. .
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (but the last entry is wrong).
  • M. Kolli, On the cardinality of the T_0-topologies on a finite set, Preprint, 2014.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
  • J. A. Wright, personal communication.
  • For further references concerning the enumeration of topologies and posets see under A000112 and A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057, A001928, A001929.
The case with unions only is A108798.
The case with intersections only is (also) A108798.
Partial sums are A326898 (the non-covering case).

Extensions

a(8)-a(12) from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(16) from Brinkmann's and McKay's paper, sent by Vladeta Jovovic, Jan 04 2006

A108800 Number of nonisomorphic systems enumerated by A102895.

Original entry on oeis.org

1, 2, 6, 28, 330, 28960, 216562364, 5592326182940100
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

Also the number of non-isomorphic sets of sets with {} that are closed under intersection. Also the number of non-isomorphic set-systems (without {}) covering n + 1 vertices and closed under intersection. - Gus Wiseman, Aug 05 2019

Examples

			From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 28 sets of sets with {} that are closed under intersection:
  {}  {}     {}            {}
      {}{1}  {}{1}         {}{1}
             {}{12}        {}{12}
             {}{1}{2}      {}{123}
             {}{2}{12}     {}{1}{2}
             {}{1}{2}{12}  {}{1}{23}
                           {}{2}{12}
                           {}{3}{123}
                           {}{1}{2}{3}
                           {}{23}{123}
                           {}{1}{2}{12}
                           {}{1}{3}{23}
                           {}{2}{3}{123}
                           {}{3}{13}{23}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{1}{2}{3}{23}
                           {}{1}{2}{3}{123}
                           {}{2}{3}{13}{23}
                           {}{1}{3}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{1}{2}{3}{13}{23}
                           {}{1}{2}{3}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}
                           {}{1}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

Crossrefs

Except a(0) = 1, first differences of A193675.
The connected case (i.e., with maximum) is A108798.
The same for union instead of intersection is (also) A108798.
The labeled version is A102895.
The case also closed under union is A326898.
The covering case is A326883.

Formula

a(n > 0) = 2 * A108798(n).

Extensions

a(6) added (using A193675) by N. J. A. Sloane, Aug 02 2011
Changed a(0) from 2 to 1 by Gus Wiseman, Aug 02 2019
a(7) added (using A108798) by Andrew Howroyd, Aug 10 2019

A326907 Number of non-isomorphic sets of subsets of {1..n} that are closed under union and cover all n vertices. First differences of A193675.

Original entry on oeis.org

2, 2, 6, 28, 330, 28960, 216562364, 5592326182940100
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2019

Keywords

Comments

Differs from A108800 in having a(0) = 2 instead of 1.

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(3) = 28 sets of sets:
  {}    {{1}}    {{12}}          {{123}}
  {{}}  {{}{1}}  {{}{12}}        {{}{123}}
                 {{2}{12}}       {{3}{123}}
                 {{}{2}{12}}     {{23}{123}}
                 {{1}{2}{12}}    {{}{3}{123}}
                 {{}{1}{2}{12}}  {{}{23}{123}}
                                 {{1}{23}{123}}
                                 {{3}{23}{123}}
                                 {{13}{23}{123}}
                                 {{}{1}{23}{123}}
                                 {{}{3}{23}{123}}
                                 {{}{13}{23}{123}}
                                 {{2}{3}{23}{123}}
                                 {{2}{13}{23}{123}}
                                 {{3}{13}{23}{123}}
                                 {{12}{13}{23}{123}}
                                 {{}{2}{3}{23}{123}}
                                 {{}{2}{13}{23}{123}}
                                 {{}{3}{13}{23}{123}}
                                 {{}{12}{13}{23}{123}}
                                 {{2}{3}{13}{23}{123}}
                                 {{3}{12}{13}{23}{123}}
                                 {{}{2}{3}{13}{23}{123}}
                                 {{}{3}{12}{13}{23}{123}}
                                 {{2}{3}{12}{13}{23}{123}}
                                 {{}{2}{3}{12}{13}{23}{123}}
                                 {{1}{2}{3}{12}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The case without empty sets is A108798.
The case with a single covering edge is A108800.
First differences of A193675.
The case also closed under intersection is A326898 for n > 0.
The labeled version is A326906.
The same for union instead of intersection is (also) A326907.

Extensions

a(7) added from A108800 by Andrew Howroyd, Aug 10 2019

A326908 Number of non-isomorphic sets of subsets of {1..n} that are closed under union and intersection.

Original entry on oeis.org

2, 4, 9, 23, 70, 256, 1160, 6599, 48017, 452518, 5574706, 90198548, 1919074899, 53620291147, 1962114118390, 93718030190126, 5822768063787557
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2019

Keywords

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(3) = 23 sets of subsets:
  {}    {}       {}              {}
  {{}}  {{}}     {{}}            {{}}
        {{1}}    {{1}}           {{1}}
        {{}{1}}  {{12}}          {{12}}
                 {{}{1}}         {{}{1}}
                 {{}{12}}        {{123}}
                 {{2}{12}}       {{}{12}}
                 {{}{2}{12}}     {{}{123}}
                 {{}{1}{2}{12}}  {{2}{12}}
                                 {{3}{123}}
                                 {{}{2}{12}}
                                 {{23}{123}}
                                 {{}{3}{123}}
                                 {{}{23}{123}}
                                 {{}{1}{2}{12}}
                                 {{3}{23}{123}}
                                 {{}{1}{23}{123}}
                                 {{}{3}{23}{123}}
                                 {{3}{13}{23}{123}}
                                 {{}{2}{3}{23}{123}}
                                 {{}{3}{13}{23}{123}}
                                 {{}{2}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The labeled version is A306445.
Taking first differences and prepending 1 gives A326898.
Taking second differences and prepending two 1's gives A001930.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

A326909 Number of sets of subsets of {1..n} closed under union and intersection and covering all of the vertices.

Original entry on oeis.org

2, 2, 7, 45, 500, 9053, 257151, 11161244, 725343385, 69407094565, 9639771895398, 1919182252611715, 541764452276876719, 214777343584048313318, 118575323291814379721651, 90492591258634595795504697, 94844885130660856889237907260, 135738086271526574073701454370969, 263921383510041055422284977248713291
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

Differs from A326878 in having a(0) = 2 instead of 1.

Examples

			The a(0) = 2 through a(2) = 7 sets of subsets:
  {}    {{1}}     {{1,2}}
  {{}}  {{},{1}}  {{},{1,2}}
                  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Covering sets of subsets are A000371.
The case without empty sets is A108798.
The case with a single covering edge is A326878.
The unlabeled version is A326898 for n > 0.
The case closed only under union is A326906.
The case closed only under intersection is (also) A326906.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}]
    (* Second program: *)
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
    A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {, }][[All, 2]];
    a[n_] := A006058[[n + 1]] + A000798[[n + 1]];
    a /@ Range[0, 18] (* Jean-François Alcover, Dec 30 2019 *)

Formula

a(n) = A000798(n) + A006058(n). - Jean-François Alcover, Dec 30 2019, after Gus Wiseman's comment in A006058.

Extensions

a(18) from A000798+A006058 by Jean-François Alcover, Dec 30 2019
Showing 1-5 of 5 results.