cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A102897 Number of ACI algebras (or semilattices) on n generators.

Original entry on oeis.org

2, 4, 14, 122, 4960, 2771104, 151947502948, 28175296471414704944
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

Also counts Horn functions on n variables, Boolean functions whose set of truth assignments are closed under 'and', or equivalently, the Boolean functions that can be written as a conjunction of Horn clauses, clauses with at most one negative literal.
Also, number of families of subsets of {1,...,n} that are closed under intersection (because we can throw in the universe, or take it out, without affecting anything else).
An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Also the number of finite sets of finite subsets of {1..n} that are closed under union. - Gus Wiseman, Aug 03 2019

Examples

			a(2) = 14: Let the points be labeled a, b. We want the number of collections of subsets of {a, b} which are closed under intersection. 0 subsets: 1 way ({}), 1 subset: 4 ways (0; a; b; ab), 2 subsets: 5 ways (0,a; 0,b; 0,ab; a,ab; b,ab) [not a,b because their intersection, 0, would be missing], 3 subsets: 3 ways (0,a,b; 0,a,ab; 0,b,ab), 4 subsets: 1 way (0,a,b,ab), for a total of 14.
From _Gus Wiseman_, Aug 03 2019: (Start)
The a(0) = 2 through a(2) = 14 sets of subsets closed under union:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{1,2}}
                  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • V. B. Alekseev, On the number of intersection semilattices [in Russian], Diskretnaya Mat. 1 (1989), 129-136.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • G. Burosch, J. Demetrovics, G. O. H. Katona, D. J. Kleitman and A. A. Sapozhenko, On the number of closure operations, in Combinatorics, Paul ErdÅ‘s is Eighty (Volume 1), Keszthely: Bolyai Society Mathematical Studies, 1993, 91-105.
  • P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010)
  • Alfred Horn, Journal of Symbolic Logic 16 (1951), 14-21. [See Lemma 7.]
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

For nonempty set systems of the same type, see A121921.
Regarding sets of subsets closed under union:
- The case with an edge containing all of the vertices is A102895.
- The case without empty edges is A102896.
- The case with intersection instead of union is (also) A102897.
- The unlabeled version is A193675.
- The case closed under both union and intersection is A306445.
- The BII-numbers of set-systems closed under union are A326875.
- The covering case is A326906.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 03 2019 *)

Formula

a(n) = 2*A102896(n) = Sum_{k=0..n} C(n, k)*A102895(k), where C(n, k) is the binomial coefficient
Asymptotically, log_2 a(n) ~ binomial(n, floor(n/2)) for all of A102894, A102895, A102896 and this sequence [Alekseev; Burosch et al.]

Extensions

Additional comments from Don Knuth, Jul 01 2005

A326901 Number of set-systems (without {}) on n vertices that are closed under intersection.

Original entry on oeis.org

1, 2, 6, 32, 418, 23702, 16554476, 1063574497050, 225402367516942398102
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of a set-system that is closed under intersection can be disjoint.

Examples

			The a(3) = 32 set-systems:
  {}  {{1}}    {{1}{12}}    {{1}{12}{13}}   {{1}{12}{13}{123}}
      {{2}}    {{1}{13}}    {{2}{12}{23}}   {{2}{12}{23}{123}}
      {{3}}    {{2}{12}}    {{3}{13}{23}}   {{3}{13}{23}{123}}
      {{12}}   {{2}{23}}    {{1}{12}{123}}
      {{13}}   {{3}{13}}    {{1}{13}{123}}
      {{23}}   {{3}{23}}    {{2}{12}{123}}
      {{123}}  {{1}{123}}   {{2}{23}{123}}
               {{2}{123}}   {{3}{13}{123}}
               {{3}{123}}   {{3}{23}{123}}
               {{12}{123}}
               {{13}{123}}
               {{23}{123}}
		

Crossrefs

The case with union instead of intersection is A102896.
The case closed under union and intersection is A326900.
The covering case is A326902.
The connected case is A326903.
The unlabeled version is A326904.
The BII-numbers of these set-systems are A326905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

a(n) = 1 + Sum_{k=0, n-1} binomial(n,k)*A102895(k). - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 10 2019

A326902 Number of set-systems (without {}) covering n vertices that are closed under intersection.

Original entry on oeis.org

1, 1, 3, 19, 319, 21881, 16417973, 1063459099837, 225402359008808647339
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of a set-system that is closed under intersection can be disjoint.

Examples

			The a(0) = 1 through a(3) = 19 set-systems:
  {}  {{1}}  {{1,2}}      {{1,2,3}}
             {{1},{1,2}}  {{1},{1,2,3}}
             {{2},{1,2}}  {{2},{1,2,3}}
                          {{3},{1,2,3}}
                          {{1,2},{1,2,3}}
                          {{1,3},{1,2,3}}
                          {{2,3},{1,2,3}}
                          {{1},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The case closed under union and intersection is A006058.
The case with union instead of intersection is A102894.
The unlabeled version is A108800(n - 1).
The non-covering case is A326901.
The connected case is A326903.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Inverse binomial transform of A326901. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 10 2019

A326905 BII-numbers of set-systems (without {}) closed under intersection.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 16, 17, 21, 24, 32, 34, 38, 40, 56, 64, 65, 66, 68, 69, 70, 72, 80, 81, 85, 88, 96, 98, 102, 104, 120, 128, 256, 257, 261, 273, 277, 321, 325, 337, 341, 384, 512, 514, 518, 546, 550, 578, 582, 610, 614, 640, 896, 1024, 1025, 1026, 1028
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all set-systems closed under intersection together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  21: {{1},{1,2},{1,3}}
  24: {{3},{1,3}}
  32: {{2,3}}
  34: {{2},{2,3}}
  38: {{2},{1,2},{2,3}}
  40: {{3},{2,3}}
  56: {{3},{1,3},{2,3}}
  64: {{1,2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
		

Crossrefs

The case with union instead of intersection is A326875.
The case closed under union and intersection is A326913.
Set-systems closed under intersection and containing the vertex set are A326903.
Set-systems closed under intersection are A326901, with unlabeled version A326904.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SubsetQ[bpe/@bpe[#],Intersection@@@Tuples[bpe/@bpe[#],2]]&]
Showing 1-4 of 4 results.