cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A193675 Number of nonisomorphic systems enumerated by A102897; that is, the number of inequivalent Horn functions, under permutation of variables.

Original entry on oeis.org

2, 4, 10, 38, 368, 29328, 216591692, 5592326399531792
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

When speaking of inequivalent Boolean functions, three groups of symmetries are typically considered: Complementations only, the Abelian group (2,...,2) of 2^n elements; permutations only, the symmetric group of n! elements; or both complementations and permutations, the octahedral group of 2^n n! elements. In this case only symmetry with respect to the symmetric group is appropriate because complementation affects the property of being a Horn function.
Also the number of non-isomorphic sets of subsets of {1..n} that are closed under union. - Gus Wiseman, Aug 04 2019

Examples

			From _Gus Wiseman_, Aug 04 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(2) = 10 sets of sets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{1,2}}
                  {{},{1}}
                  {{},{1,2}}
                  {{2},{1,2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.

Crossrefs

The covering case is A326907.
The case without {} is A193674.
The labeled version is A102897.
The same with intersection instead of union is also A193675.
The case closed under both union and intersection also is A326908.

Formula

a(n) = 2 * A193674(n).

Extensions

a(6) received from Don Knuth, Aug 17 2005
a(6) corrected by Pierre Colomb, Aug 02 2011
a(7) = 2*A193674(7) from Hugo Pfoertner, Jun 18 2018

A121921 a(n) = A102897(n) - 1.

Original entry on oeis.org

1, 3, 13, 121, 4959, 2771103, 151947502947
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2007

Keywords

Comments

Same as A102897, but counts nonempty set systems.
Number of Pi-systems of {1,...,n}. A Pi-system on a set X is a nonempty collection of subsets of X closed under finite intersections. - Matthew Azar, Jul 12 2025

References

  • L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 2015, p. 7.

Crossrefs

Cf. A102897.

A000798 Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.

Original entry on oeis.org

1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203
Offset: 0

Views

Author

Keywords

Comments

From Altug Alkan, Dec 18 2015 and Feb 28 2017: (Start)
a(p^k) == k+1 (mod p) for all primes p. This is proved by Kizmaz at On The Number Of Topologies On A Finite Set link. For proof see Theorem 2.4 in page 2 and 3. So a(19) == 2 (mod 19).
a(p+n) == A265042(n) (mod p) for all primes p. This is also proved by Kizmaz at related link, see Theorem 2.7 in page 4. If n=2 and p=17, a(17+2) == A265042(2) (mod 17), that is a(19) == 51 (mod 17). So a(19) is divisible by 17.
In conclusion, a(19) is a number of the form 323*n - 17. (End)
The BII-numbers of finite topologies without their empty set are given by A326876. - Gus Wiseman, Aug 01 2019
From Tian Vlasic, Feb 23 2022: (Start)
Although no general formula is known for a(n), by considering the number of topologies with a fixed number of open sets, it is possible to explicitly represent the sequence in terms of Stirling numbers of the second kind.
For example: a(n,3) = 2*S(n,2), a(n,4) = S(n,2) + 6*S(n,3), a(n,5) = 6*S(n,3) + 24*S(n,4).
Lower and upper bounds are known: 2^n <= a(n) <= 2^(n*(n-1)), n > 1.
This follows from the fact that there are 2^(n*(n-1)) reflexive relations on a set with n elements.
Furthermore: a(n+1) <= a(n)*(3a(n)+1). (End)

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
The a(3) = 29 topologies are the following (empty sets not shown):
  {123}  {1}{123}   {1}{12}{123}  {1}{2}{12}{123}   {1}{2}{12}{13}{123}
         {2}{123}   {1}{13}{123}  {1}{3}{13}{123}   {1}{2}{12}{23}{123}
         {3}{123}   {1}{23}{123}  {2}{3}{23}{123}   {1}{3}{12}{13}{123}
         {12}{123}  {2}{12}{123}  {1}{12}{13}{123}  {1}{3}{13}{23}{123}
         {13}{123}  {2}{13}{123}  {2}{12}{23}{123}  {2}{3}{12}{23}{123}
         {23}{123}  {2}{23}{123}  {3}{13}{23}{123}  {2}{3}{13}{23}{123}
                    {3}{12}{123}
                    {3}{13}{123}        {1}{2}{3}{12}{13}{23}{123}
                    {3}{23}{123}
(End)
		

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 229.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 243.
  • Levinson, H.; Silverman, R. Topologies on finite sets. II. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 699--712, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561090 (81c:54006)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For further references concerning the enumeration of topologies and posets see under A001035.
  • G.H. Patil and M.S. Chaudhary, A recursive determination of topologies on finite sets, Indian Journal of Pure and Applied Mathematics, 26, No. 2 (1995), 143-148.

Crossrefs

Row sums of A326882.
Cf. A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057.
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],DeleteCases[Intersection@@@Tuples[#,2],{}]]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)

Formula

a(n) = Sum_{k=0..n} Stirling2(n, k)*A001035(k).
E.g.f.: A(exp(x) - 1) where A(x) is the e.g.f. for A001035. - Geoffrey Critzer, Jul 28 2014
It is known that log_2(a(n)) ~ n^2/4. - Tian Vlasic, Feb 23 2022

Extensions

Two more terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jun 10 2007

A102896 Number of ACI algebras (or semilattices) on n generators with no annihilator.

Original entry on oeis.org

1, 2, 7, 61, 2480, 1385552, 75973751474, 14087648235707352472
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

Or, number of Moore families on an n-set, that is, families of subsets that contain the universal set {1,...,n} and are closed under intersection.
Or, number of closure operators on a set of n elements.
An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Also the number of set-systems on n vertices that are closed under union. The BII-numbers of these set-systems are given by A326875. - Gus Wiseman, Jul 31 2019
From Bernhard Ganter, Jul 08 2025: (Start)
Also the number of union-free families of subsets of an n-set; i.e., families of nonempty sets on n elements such that no set is a union of some others.
Also the number of intersection-free families of subsets of an n-set; i.e., of families of proper subsets on n elements such that no set is an intersection of some others.
(Note that every union-free family on an n-set is the set of union-irreducible elements of exactly one union-closed family, and each family of union-irreducible elements is union-free. Same for intersection.) (End)

Examples

			From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 1 through a(2) = 7 set-systems closed under union:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
(End)
		

References

  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010). [From Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010]
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

For set-systems closed under union:
- The covering case is A102894.
- The unlabeled case is A193674.
- The case also closed under intersection is A306445.
- Set-systems closed under overlapping union are A326866.
- The BII-numbers of these set-systems are given by A326875.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)

Formula

a(n) = Sum_{k=0..n} C(n, k)*A102894(k), where C(n, k) is the binomial coefficient.
For asymptotics see A102897.
a(n) = A102897(n)/2. - Gus Wiseman, Jul 31 2019

Extensions

N. J. A. Sloane added a(6) from the Habib et al. reference, May 26 2005
Additional comments from Don Knuth, Jul 01 2005
a(7) from Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010

A306445 Number of collections of subsets of {1, 2, ..., n} that are closed under union and intersection.

Original entry on oeis.org

2, 4, 13, 74, 732, 12085, 319988, 13170652, 822378267, 76359798228, 10367879036456, 2029160621690295, 565446501943834078, 221972785233309046708, 121632215040070175606989, 92294021880898055590522262, 96307116899378725213365550192, 137362837456925278519331211455157, 266379254536998812281897840071155592
Offset: 0

Views

Author

Yuan Yao, Feb 15 2019

Keywords

Examples

			For n = 0, the empty collection and the collection containing the empty set only are both valid.
For n = 1, the 2^(2^1)=4 possible collections are also all closed under union and intersection.
For n = 2, there are only 3 invalid collections, namely the collections containing both {1} and {2} but not both {1,2} and the empty set. Hence there are 2^(2^2)-3 = 13 valid collections.
From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 2 through a(4) = 13 sets of sets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{1,2}}
                  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • R. Stanley, Enumerative Combinatorics, volume 1, second edition, Exercise 3.46.

Crossrefs

The covering case with {} is A000798.
The case closed under union only is A102897.
The case closed under intersection only is (also) A102897.
The BII-numbers of these set-systems are A326876.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
    a[n_] := 1 + Sum[Binomial[n, i]*Binomial[i, i - d]*A000798[[d + 1]], {d, 0, n}, {i, d, n}];
    a /@ Range[0, Length[A000798] - 1] (* Jean-François Alcover, Dec 30 2019 *)
  • Python
    import math
    # Sequence A000798
    topo = [1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203]
    def nCr(n, r):
        return math.factorial(n) // (math.factorial(r) * math.factorial(n-r))
    for n in range(len(topo)):
        ans = 1
        for d in range(n+1):
            for i in range(d, n+1):
                ans += nCr(n,i) * nCr(i, i-d) * topo[d]
        print(n, ans)

Formula

a(n) = 1 + Sum_{d=0..n} Sum_{i=d..n} C(n,i)*C(i,i-d)*A000798(d). (Follows by caseworking on the maximal and minimal set in the collection.)
E.g.f.: exp(x) + exp(x)^2*B(exp(x)-1) where B(x) is the e.g.f. for A001035 (after Stanley reference above). - Geoffrey Critzer, Jan 19 2024

Extensions

a(16)-a(18) from A000798 by Jean-François Alcover, Dec 30 2019

A102894 Number of ACI algebras or semilattices on n generators, with no identity or annihilator.

Original entry on oeis.org

1, 1, 4, 45, 2271, 1373701, 75965474236, 14087647703920103947
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

Or, number of families of subsets of {1, ..., n} that are closed under intersection and contain both the universe and the empty set.
An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Also the number of set-systems covering n vertices that are closed under union. The BII-numbers of these set-systems are given by A326875. - Gus Wiseman, Aug 01 2019
Number of strict closure operators on a set of n elements, where the closure operator is said to be strict if the empty set is closed. - Tian Vlasic, Jul 30 2022

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
The a(3) = 45 set-systems with {} and {1,2,3} that are closed under intersection are the following ({} and {1,2,3} not shown). The BII-numbers of these set-systems are given by A326880.
0   {1}   {1}{2}   {1}{2}{3}    {1}{2}{3}{12}   {1}{2}{3}{12}{13}
    {2}   {1}{3}   {1}{2}{12}   {1}{2}{3}{13}   {1}{2}{3}{12}{23}
    {3}   {2}{3}   {1}{2}{13}   {1}{2}{3}{23}   {1}{2}{3}{13}{23}
    {12}  {1}{12}  {1}{2}{23}   {1}{2}{12}{13}
    {13}  {1}{13}  {1}{3}{12}   {1}{2}{12}{23}
    {23}  {1}{23}  {1}{3}{13}   {1}{3}{12}{13}        {1}{2}{3}{12}{13}{23}
          {2}{12}  {1}{3}{23}   {1}{3}{13}{23}
          {2}{13}  {2}{3}{12}   {2}{3}{12}{23}
          {2}{23}  {2}{3}{13}   {2}{3}{13}{23}
          {3}{12}  {2}{3}{23}
          {3}{13}  {1}{12}{13}
          {3}{23}  {2}{12}{23}
                   {3}{13}{23}
(End)
		

References

  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

Regarding set-systems covering n vertices closed under union:
- The non-covering case is A102896.
- The BII-numbers of these set-systems are A326875.
- The case with intersection instead of union is A326881.
- The unlabeled case is A108798.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)

Formula

Inverse binomial transform of A102896.
For asymptotics see A102897.

Extensions

Additional comments from Don Knuth, Jul 01 2005

A326878 Number of topologies whose points are a subset of {1..n}.

Original entry on oeis.org

1, 2, 7, 45, 500, 9053, 257151, 11161244, 725343385, 69407094565, 9639771895398, 1919182252611715, 541764452276876719, 214777343584048313318, 118575323291814379721651, 90492591258634595795504697, 94844885130660856889237907260, 135738086271526574073701454370969, 263921383510041055422284977248713291
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2019

Keywords

Examples

			The a(0) = 1 through a(2) = 7 topologies:
  {{}}  {{}}      {{}}
        {{},{1}}  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Binomial transform of A000798 (the covering case).

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}]
    (* Second program: *)
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
    a[n_] := Sum[Binomial[n, k]*A000798[[k+1]], {k, 0, n}];
    a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Dec 30 2019 *)

Formula

From Geoffrey Critzer, Jul 12 2022: (Start)
E.g.f.: exp(x)*A(exp(x)-1) where A(x) is the e.g.f. for A001035.
a(n) = Sum_{k=0..n} binomial(n,k)*A000798(k). (End)

A102895 Number of ACI algebras or semilattices on n generators with no identity element.

Original entry on oeis.org

1, 2, 8, 90, 4542, 2747402, 151930948472, 28175295407840207894
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Or, number of families of subsets of {1, ..., n} that are closed under intersection and contain the empty set.

Examples

			a(2) = 8: Let the points be labeled a, b and let 0 denote the empty set. We want the number of collections of subsets of {a, b} which are closed under intersection and contain the empty subset. 0 subsets: 0 ways, 1 subset: 1 way (0), 2 subsets: 3 ways (0,a; 0,b; 0,ab), 3 subsets: 3 ways (0,a,b; 0,a,ab; 0,b,ab), 4 subsets: 1 way (0,a,b,ab), for a total of 8.
From _Gus Wiseman_, Aug 02 2019: (Start)
The a(0) = 1 through a(2) = 8 sets of sets with {} that are closed under intersection are:
  {{}}  {{}}      {{}}
        {{},{1}}  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{},{1},{2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010)
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

The connected case (i.e., with maximum) is A102894.
The same for union instead of intersection is A102896.
The unlabeled version is A108800.
The case also closed under union is A326878.
The BII-numbers of these set-systems (without the empty set) are A326880.
The covering case is A326881.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 02 2019 *)

Formula

For asymptotics see A102897.
a(n > 0) = 2 * A102894(n).

Extensions

Additional comments from Don Knuth, Jul 01 2005
Changed a(0) from 2 to 1 by Gus Wiseman, Aug 02 2019

A193674 Number of nonisomorphic systems enumerated by A102896; that is, the number of inequivalent closure operators (or Moore families).

Original entry on oeis.org

1, 2, 5, 19, 184, 14664, 108295846, 2796163199765896
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

Also the number of unlabeled n-vertex set-systems (A003180) closed under union. - Gus Wiseman, Aug 01 2019

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 19 set-systems closed under union:
  {}  {}     {}               {}
      {{1}}  {{1}}            {{1}}
             {{1,2}}          {{1,2}}
             {{2},{1,2}}      {{1,2,3}}
             {{1},{2},{1,2}}  {{2},{1,2}}
                              {{3},{1,2,3}}
                              {{1},{2},{1,2}}
                              {{2,3},{1,2,3}}
                              {{1},{2,3},{1,2,3}}
                              {{3},{2,3},{1,2,3}}
                              {{1,3},{2,3},{1,2,3}}
                              {{2},{3},{2,3},{1,2,3}}
                              {{2},{1,3},{2,3},{1,2,3}}
                              {{3},{1,3},{2,3},{1,2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,3},{2,3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.1.1

Crossrefs

The labeled case is A102896.
The covering case is A108798.
The same for intersection instead of union is A108800.
The case with empty edges allowed is A193675.

Formula

a(n) = A193675(n)/2.

Extensions

a(6) received Aug 17 2005
a(6) corrected by Pierre Colomb, Aug 02 2011
a(7) from Gunnar Brinkmann, Feb 07 2018

A108798 Number of nonisomorphic systems enumerated by A102894; that is, the number of inequivalent closure operators in which the empty set is closed. Also, the number of union-closed sets with n elements that contain the universe and the empty set.

Original entry on oeis.org

1, 1, 3, 14, 165, 14480, 108281182, 2796163091470050
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

Also the number of unlabeled finite sets of subsets of {1..n} that contain {} and {1..n} and are closed under intersection. - Gus Wiseman, Aug 02 2019

Examples

			From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 14 union-closed sets of sets:
  {}  {}{1}  {}{12}        {}{123}
             {}{2}{12}     {}{3}{123}
             {}{1}{2}{12}  {}{23}{123}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{13}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{2}{13}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{12}{13}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{3}{12}{13}{23}{123}
                           {}{2}{3}{12}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

Crossrefs

Formula

a(n) = A108800(n)/2.

Extensions

a(6) added (using A193674) by N. J. A. Sloane, Aug 02 2011
Added a(7), and reference to union-closed sets. - Gunnar Brinkmann, Feb 05 2018
Showing 1-10 of 21 results. Next