A326901 Number of set-systems (without {}) on n vertices that are closed under intersection.
1, 2, 6, 32, 418, 23702, 16554476, 1063574497050, 225402367516942398102
Offset: 0
Examples
The a(3) = 32 set-systems: {} {{1}} {{1}{12}} {{1}{12}{13}} {{1}{12}{13}{123}} {{2}} {{1}{13}} {{2}{12}{23}} {{2}{12}{23}{123}} {{3}} {{2}{12}} {{3}{13}{23}} {{3}{13}{23}{123}} {{12}} {{2}{23}} {{1}{12}{123}} {{13}} {{3}{13}} {{1}{13}{123}} {{23}} {{3}{23}} {{2}{12}{123}} {{123}} {{1}{123}} {{2}{23}{123}} {{2}{123}} {{3}{13}{123}} {{3}{123}} {{3}{23}{123}} {{12}{123}} {{13}{123}} {{23}{123}}
Links
- M. Habib and L. Nourine, The number of Moore families on n = 6, Discrete Math., 294 (2005), 291-296.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
Formula
a(n) = 1 + Sum_{k=0, n-1} binomial(n,k)*A102895(k). - Andrew Howroyd, Aug 10 2019
Extensions
a(5)-a(8) from Andrew Howroyd, Aug 10 2019
Comments