cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000608 Number of connected partially ordered sets with n unlabeled elements.

Original entry on oeis.org

1, 1, 1, 3, 10, 44, 238, 1650, 14512, 163341, 2360719, 43944974, 1055019099, 32664984238, 1303143553205, 66900392672168, 4413439778321689
Offset: 0

Views

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • G. Melançon, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Inverse Euler transform of A000112.
Cf. A263864 (multiset transform), A342500 (refined by rank).

Programs

Extensions

More terms from Christian G. Bower, who pointed out connection with A000112, Jan 21 1998 and Dec 12 2001
More terms from Vladeta Jovovic, Jan 04 2006; corrected Jan 15 2006

A342447 T(n,e) is the number of unlabeled posets of n>=0 points with e>=0 arcs in the Hasse diagram, irregular triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 8, 2, 1, 1, 4, 11, 29, 12, 5, 1, 1, 4, 12, 43, 105, 92, 45, 12, 3, 1, 1, 4, 12, 46, 156, 460, 582, 487, 204, 71, 14, 7, 1, 1, 4, 12, 47, 170, 670, 2097, 3822, 4514, 3271, 1579, 561, 186, 44, 16, 4, 1, 1, 4, 12, 47, 173, 731, 2954, 10513, 24584, 40182
Offset: 0

Views

Author

R. J. Mathar, Mar 12 2021

Keywords

Comments

Maximal e for a given n (i.e., the length of the n-th row minus 1) is A002620(n), see Mathematics StackExchange. - Andrey Zabolotskiy, Mar 12 2021

Examples

			The table starts
1 ;
1 ;
1 1 ;
1 1 3 ;
1 1 4  8  2 ;
1 1 4 11 29  12   5 ;
1 1 4 12 43 105  92   45   12    3 ;
1 1 4 12 46 156 460  582  487  204   71   14   7 ;
1 1 4 12 47 170 670 2097 3822 4514 3271 1579 561 186 44 16 4 ;
...
T(4,0) = 1: the 4-point poset with no relations, 4 isolated points in the Hasse diagram.
T(4,1) = 1: the 4-point poset with one relation, the Hasse diagram has one vertical line and 2 isolated points.
T(4,2) = 4: the 4 posets contributing to A022016(4) = 4, extended by additional isolated point when the number of points is less than 4.
T(4,3) = 8: the 8 posets contributing to A022017(3).
T(4,4) = 2: the "dagaz rune" poset {1<3, 2<3, 1<4, 2<4}
  o o
  |X|
  o o
and the "diamond" poset {1<2, 1<3, 2<4, 3<4}
    o
   / \
  o   o
   \ /
    o
		

Crossrefs

Cf. A000112 (row sums), A263864, A022016 (convergents down rows), A002620, A342472 (lower bound row length), A342590 (connected), A342589 (labeled), A376633 (self-dual).

Formula

T(n,0) = T(n,1) = 1.
T(n,e) = A022016(e) for n >= 2e.

Extensions

T(0,0) = 1 prepended and "conjecture" removed from A022016 formula. Andrey Zabolotskiy, Mar 12 2021

A350635 Triangle read by rows: T(n,k) is the number of n-element unlabeled P-series with k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 10, 4, 1, 1, 31, 28, 11, 4, 1, 1, 63, 67, 31, 11, 4, 1, 1, 127, 167, 80, 32, 11, 4, 1, 1, 255, 388, 213, 83, 32, 11, 4, 1, 1, 511, 908, 534, 226, 84, 32, 11, 4, 1, 1, 1023, 2053, 1343, 580, 229, 84, 32, 11, 4, 1, 1
Offset: 1

Views

Author

Salah Uddin Mohammad, Jan 09 2022

Keywords

Examples

			Triangle begins:
    1;
    1,   1;
    3,   1,  1;
    7,   4,  1,  1;
   15,  10,  4,  1,  1;
   31,  28, 11,  4,  1, 1;
   63,  67, 31, 11,  4, 1, 1;
  127, 167, 80, 32, 11, 4, 1, 1;
  ...
		

Crossrefs

Row sums give A349276.
Column 1 is A255047(n-1).
Cf. A263864 (all posets), A349488 (disconnected).

Programs

  • PARI
    B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x))
    T(n)=[Vecrev(p/y) | p<-Vec(-1 + exp(sum(k=1, n, y^k*B(x^k)/k + O(x*x^n))))]
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 13 2022

Formula

G.f.: -1 + exp(Sum_{k>=1} y^k*B(x^k)/k) where B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x)). - Andrew Howroyd, Jan 13 2022

A350772 Triangle read by rows: T(n,k) is the number of n-element unlabeled series-parallel posets with k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 30, 12, 4, 1, 1, 103, 45, 13, 4, 1, 1, 375, 160, 48, 13, 4, 1, 1, 1400, 613, 175, 49, 13, 4, 1, 1, 5380, 2354, 680, 178, 49, 13, 4, 1, 1
Offset: 1

Views

Author

Salah Uddin Mohammad, Jan 14 2022

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     3,    1,   1;
     9,    4,   1,   1;
    30,   12,   4,   1,  1;
   103,   45,  13,   4,  1,  1;
   375,  160,  48,  13,  4,  1, 1;
  1400,  613, 175,  49, 13,  4, 1, 1;
  5380, 2354, 680, 178, 49, 13, 4, 1, 1;
  ...
		

Crossrefs

Row sums give A003430.
Column 1 is A007453.
Cf. A263864 (all posets), A349488 (disconnected).

A350783 Triangle read by rows: T(n,k) is the number of n-element unlabeled N-free posets with k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 31, 12, 4, 1, 1, 115, 46, 13, 4, 1, 1, 474, 173, 49, 13, 4, 1, 1, 2097, 727, 188, 50, 13, 4, 1, 1, 9967, 3195, 795, 191, 50, 13, 4, 1, 1, 50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1
Offset: 1

Views

Author

Salah Uddin Mohammad, Jan 16 2022

Keywords

Examples

			Triangle begins:
      1;
      1,     1;
      3,     1,    1;
      9,     4,    1,   1;
     31,    12,    4,   1,   1;
    115,    46,   13,   4,   1,  1;
    474,   173,   49,  13,   4,  1,  1;
   2097,   727,  188,  50,  13,  4,  1, 1;
   9967,  3195,  795, 191,  50, 13,  4, 1, 1;
  50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1;
  ...
		

Crossrefs

Row sums give A202182.
Column 1 is A202180.
Cf. A263864 (all posets), A349488 (disconnected).

A356558 Triangle read by rows: T(n,k), where n, k >= 2, is the number of n-element unlabeled connected series-parallel posets with k ordinal terms that are either the singleton or disconnected posets.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 16, 9, 4, 1, 52, 31, 14, 5, 1, 188, 108, 52, 20, 6, 1, 690, 402, 193, 80, 27, 7, 1, 2638, 1523, 744, 315, 116, 35, 8, 1, 10272, 5934, 2908, 1261, 483, 161, 44, 9, 1, 40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1
Offset: 2

Views

Author

Salah Uddin Mohammad, Aug 12 2022

Keywords

Comments

If a poset P is obtained by taking the ordinal sum of the posets A and B, then the posets A and B are called the ordinal terms of P.

Examples

			Triangle begins:
      1;
      2,     1;
      5,     3,     1;
     16,     9,     4,    1;
     52,    31,    14,    5,    1;
    188,   108,    52,   20,    6,   1;
    690,   402,   193,   80,   27,   7,   1;
   2638,  1523,   744,  315,  116,  35,   8,  1;
  10272,  5934,  2908, 1261,  483, 161,  44,  9,  1;
  40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1;
The connected posets counted in the first three rows of the triangle are shown by using the Hasse diagram as follows:
-------
  o
  |
  o
--------------------------
                  |   o
    o     o   o   |   |
   / \     \ /    |   o
  o   o     o     |   |
                  |   o
----------------------------------------------------------
    o    o o o   o o    |                           |
   /|\    \|/    |X|    |                           |   o
  o o o    o     o o    |     o     o   o     o     |   |
                        |     |      \ /     / \    |   o
    o           o       |     o       o     o   o   |   |
    |          / \      |    / \      |      \ /    |   o
    o   o     o   \     |   o   o     o       o     |   |
     \ /      |    \    |                           |   o
      o       o     o   |                           |
		

Crossrefs

Row sums give A007453.
Cf. A263864 (all posets), A349488 (disconnected).
Showing 1-6 of 6 results.