cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A376894 Stationary differences in A342447: a(n) = A342447(2k-n+1,k)-A342447(2k-n,k) which does not depend on k if k>= 2n-2 (for n>0).

Original entry on oeis.org

1, 3, 14, 61, 273, 1228, 5631, 26141, 123261, 589251, 2855815, 14021038, 69707192
Offset: 1

Views

Author

Rico Zöllner and Konrad Handrich, Oct 22 2024

Keywords

Comments

Number of unlabeled posets A342447(j,k) with j points, without isolated points, with k arcs in the Hasse diagramm missing n points to achieve saturation of the poset i.e. j=2k-n+1.
A342447 is the number of unlabeled posets of j points with k arcs in the Hasse diagram.
A342447(j,k)-A342447(j-1,k) = 0 if j > 2k.
For k >= 2n-2, A342447(2k-n+1,k)-A342447(2k-n,k) does not depend on k.
Therefore we define: a(n) = A342447(2k-n+1,k)-A342447(2k-n,k).
A342447(2k-n,k) = A022016(k) - a(1)-...-a(n) for k >= 2n-2, n>0
Proof will soon be submitted to JOIS.

Examples

			See the table of A342447
 1 ;
 1 ;
 1 1 ;
 1 1 3 ;
 1 1 4  8  2 ;
 1 1 4 11 29  12   5 ;
 1 1 4 12 43 105  92   45   12    3 ;
 1 1 4 12 46 156 460  582  487  204   71   14   7 ;
 1 1 4 12 47 170 670 2097 3822 4514 3271 1579 561 186 44 16 4 ;
 ...
The differences between row j and j-1 of column k (convergence indicated by | |):
 0 ;
 0 ;
 0 |1| ;
 0  0 |3| ;
 0  0 |1| 8    2 ;
 0  0  0 |3|  27    12     5 ;
 0  0  0 |1| |14|   93    87      45    12   ... ;
 0  0  0  0   |3|   51   368     537   475   ... ;
 0  0  0  0   |1|  |14|  210    1515  3335   ... ;
 0  0  0  0    0    |3|  |61|    857  6691   ... ;
 0  0  0  0    0    |1|  |14|    258  3683   ... ;
 0  0  0  0    0     0    |3|    |61| 1127   ... ;
 0  0  0  0    0     0    |1|    |14| |273|  ... ;
a(n) = A342447(2k-n+1,k)-A342447(2k-n,k) for n>=1
e.g. for n = 2 -> k = 2n-2 = 2
a(2) = A342447(3,2) - A342447(2,2) = 3 - 0 = 3
for n = 3 -> k >= 2n-2 = 6
a(3) = A342447(10,6) - A342447(9,6) = 745 - 731 = 14
		

References

  • R. P. Stanley, Enumerative Combinatorics I, 2nd. ed.

Crossrefs

Differences of A342447.

Extensions

a(8)-a(13) from Konrad Handrich, Jan 07 2025

A000112 Number of partially ordered sets ("posets") with n unlabeled elements.

Original entry on oeis.org

1, 1, 2, 5, 16, 63, 318, 2045, 16999, 183231, 2567284, 46749427, 1104891746, 33823827452, 1338193159771, 68275077901156, 4483130665195087
Offset: 0

Views

Author

Keywords

Comments

Also number of fixed effects ANOVA models with n factors, which may be both crossed and nested.

Examples

			R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 (or 2nd. ed., Fig. 3.1, p. 243) shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of unlabeled T_0 topologies with n points. For example, non-isomorphic representatives of the a(4) = 16 topologies are:
  {}{1}{12}{123}{1234}
  {}{1}{2}{12}{123}{1234}
  {}{1}{12}{13}{123}{1234}
  {}{1}{12}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{1234}
  {}{1}{2}{12}{123}{124}{1234}
  {}{1}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{1234}
  {}{1}{2}{12}{13}{24}{123}{124}{1234}
  {}{1}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{124}{1234}
  {}{1}{2}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{14}{23}{123}{124}{134}{1234}
  {}{1}{2}{3}{4}{12}{13}{14}{23}{24}{34}{123}{124}{134}{234}{1234}
(End)
		

References

  • G. Birkhoff, Lattice Theory, 1961, p. 4.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • J. L. Davison, Asymptotic enumeration of partial orders. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 53 (1986), 277--286. MR0885256 (88c:06001)
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. I, 2nd. ed., Chap. 3, pp. 241ff; Vol. 2, Problem 5.39, p. 88.
  • For further references concerning the enumeration of topologies and posets see under A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A006057.
Cf. A079263, A079265, A065066 (refined by maximal elements), A342447 (refined by number of arcs).
Row sums of A263859. Euler transform of A000608.

Extensions

a(15)-a(16) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jan 04 2006

A022016 Number of partially ordered sets with no isolated points and with n "lines": pairs (a,b) where a < b and there is no c with a < c < b. The lines form the minimal basis for the partial ordering.

Original entry on oeis.org

1, 1, 4, 12, 47, 174, 749, 3291, 15675, 78104, 411042, 2261961, 13009112, 77860234
Offset: 0

Views

Author

Keywords

Comments

The points are unlabeled.

Examples

			See Sloane's link.
		

References

  • See A000112 for references and links about partially ordered sets.

Crossrefs

Extensions

a(6)-a(13) from Rico Zöllner and Konrad Handrich, Nov 19 2024

A342590 T(n,k) is the number of connected posets of n unlabeled elements with k covering relations (n>=1, k>=0). Triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 0, 0, 0, 8, 2, 0, 0, 0, 0, 27, 12, 5, 0, 0, 0, 0, 0, 91, 87, 45, 12, 3, 0, 0, 0, 0, 0, 0, 350, 532, 475, 201, 71, 14, 7, 0, 0, 0, 0, 0, 0, 0, 1376, 3272, 4298, 3197, 1565, 554, 186, 44, 16, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5743, 19396, 36664, 41706, 31931, 16972
Offset: 1

Views

Author

R. J. Mathar, Mar 16 2021

Keywords

Examples

			The table starts
1: 1
2: 0 1
3: 0 0 3
4: 0 0 0 8 2
5: 0 0 0 0 27 12   5
6: 0 0 0 0 0  91  87   45   12    3
7: 0 0 0 0 0   0 350  532  475  201   71   14   7
8: 0 0 0 0 0   0   0 1376 3272 4298 3197 1565 554 186 44 16 4
		

Crossrefs

Cf. A000608 (row sums), A022017 (column sums), A342447 (not necess. connected), A342588 (labeled).

A342589 T(n,k) is the number of posets of n labeled elements with k covering relations (n>=1, k>=0). Triangle read by rows.

Original entry on oeis.org

1, 1, 2, 1, 6, 12, 1, 12, 60, 128, 18, 1, 20, 180, 880, 2090, 960, 100, 1, 30, 420, 3480, 17550, 47772, 43920, 15000, 1710, 140, 1, 42, 840, 10360, 84630, 452004, 1428868, 2094960, 1465170, 491540, 90594, 10080, 770
Offset: 1

Views

Author

R. J. Mathar, Mar 16 2021

Keywords

Examples

			The triangle starts:
  1: 1
  2: 1 2
  3: 1 6 12
  4: 1 12 60 128 18
  5: 1 20 180 880 2090 960 100
  6: 1 30 420 3480 17550 47772 43920 15000 1710 140
  7: 1 42 840 10360 84630 452004 1428868 2094960 1465170 491540 90594 10080 770
		

Crossrefs

Cf. A001035 (row sums), A002378 (k=1), A033486 (k=2?), A342447 (unlabeled), A342588 (connected).

A342472 T(n,k) is the maximum sum of products of adjacent parts in all compositions of n into k parts: triangle read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 0, 4, 4, 3, 0, 6, 6, 5, 4, 0, 9, 9, 8, 6, 5, 0, 12, 12, 11, 9, 7, 6, 0, 16, 16, 15, 12, 10, 8, 7, 0, 20, 20, 19, 16, 13, 11, 9, 8, 0, 25, 25, 24, 20, 17, 14, 12, 10, 9, 0, 30, 30, 29, 25, 21, 18, 15, 13, 11, 10, 0, 36, 36, 35, 30, 26, 22, 19, 16, 14, 12, 11, 0, 42, 42, 41
Offset: 1

Views

Author

R. J. Mathar, Mar 13 2021

Keywords

Comments

Denote compositions of n into k parts by n = p_1 +p_2 + .... +p_k, p_i>0. For these compositions let S(n,k,c) = p_1*p_2 +p_2*p_3 +.. +p_{k-1}*p_k. Then T(n,k) = max_c S(n,k,c), where c runs through all A007318(n-1,k-1) compositions.
Background: Let p_i be the number of elements in level i of a poset of n points. Connect all points on level i with all points on level i+1 "maximally" with p_i*p_{i+1} arcs in the Hasse diagram. So T(n,k) is a lower bound on the maximum number of arcs in a Hasse diagram with k levels, and the maximum T(n,k) (+1 to add the diagrams of n disconnected elements) of a row is a lower bound of the row lengths of A342447.
T(n,2) = A002620(n) has the standard interpretation of maximizing the area p_1*p_2 of a rectangle given the semiperimeter p_1+p_2=n. [S=p_1*p_2=p_1*(n-p_1) is a quadratic function of p_1 with well defined maximum.] - R. J. Mathar, Mar 14 2021
T(n,3) maximizes S = +p_1*p_2+p_2*p_3 = p_1*p_2+p_2*(n-p_1-p_2) = p_2*(n-p_2) which again is a quadratic function of p_2 with well defined maximum. - R. J. Mathar, Mar 14 2021
For k>=4 and odd n-k consider p_1=1, p_2=(n-k+1)/2, p_3=p_2+1, p_4=p_5=..=p_k=1 which gives S= n+(n-k)+[(n-k)^2-5]/4, a lower bound (apparently strict). For k>=4 and even n-k consider p_1=1, p_2=p_3=(n-k+2)/2, p_4=p_5=...=p_k=1 which gives S=n-2+(n-k+2)^2/4, a lower bound (apparently strict). - R. J. Mathar, Mar 14 2021

Examples

			For n=6 and k=3 for example 6 = 2+3+1 = 1+3+2 obtain 2*3+3*1 = 9 = T(6,3).
For n=6 and k=4 for example 6 = 1+2+2+1 obtains 1*2+2*2+2*1=8 =T(6,4).
For n=7 and k=4 for example 7 = 1+3+2+1 = 1+2+3+1 obtains 1*2+2*3+3*1 = 11 = T(7,4).
For n=7 and k=5 for example 7 = 1+1+2+2+1 = 1+2+2+1+1 obtains 1*2+2*2+2*1+1*1 = 9 = T(7,5).
The triangle starts with n>=1 and 1<=k<=n as:
  0
  0   1
  0   2   2
  0   4   4   3
  0   6   6   5   4
  0   9   9   8   6   5
  0  12  12  11   9   7   6
  0  16  16  15  12  10   8   7
  0  20  20  19  16  13  11   9   8
  0  25  25  24  20  17  14  12  10   9
  0  30  30  29  25  21  18  15  13  11  10
  0  36  36  35  30  26  22  19  16  14  12  11
  0  42  42  41  36  31  27  23  20  17  15  13  12
  0  49  49  48  42  37  32  28  24  21  18  16  14  13
  0  56  56  55  49  43  38  33  29  25  22  19  17  15  14
		

Crossrefs

Cf. A002620 (columns 2,3,5 ?), A024206 (column 4?), A033638 (column 6?), A290743 (column 7?), A342447.

Programs

  • Maple
    # Maximum of Sum_i  p_i*p(i+1) over all combinations n=p_1+p_2+..p_k
    A342472 := proc(n,k)
        local s,c;
        s := 0 ;
        for c in combinat[composition](n,k) do
            add( c[i]*c[i+1],i=1..nops(c)-1) ;
            s := max(s,%) ;
        end do:
        s ;
    end proc:
    for n from 1 to 15 do
        for k from 1 to n do
            printf("%3d ",A342472(n,k)) ;
        end do:
        printf("\n") ;
    end do:

Formula

T(n,n) = n-1; where all p_i=1.
T(n,2) = T(n,3) = A002620(n).
T(n,k) >= 2*n-k+((n-k)^2-5)/4, n-k odd, k>=4. - R. J. Mathar, Mar 14 2021
T(n,k) >= n-2+(n-k+2)^2/4, n-k even, k>=4. - R. J. Mathar, Mar 14 2021

A376633 T(n,k) is the number of nonisomorphic n-element self-dual posets (or partially ordered sets) with k arcs in the Hasse diagram, irregular triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 5, 2, 1, 1, 1, 2, 4, 9, 11, 12, 5, 4, 1, 1, 1, 2, 4, 10, 16, 26, 22, 21, 10, 5, 0, 1, 1, 1, 2, 4, 11, 20, 44, 65, 98, 86, 79, 41, 25, 8, 4, 2, 2, 1, 1, 2, 4, 11, 21, 51, 92, 175, 220, 276, 237, 208, 103, 67, 25, 18, 5, 3, 0, 1, 1, 1, 2, 4, 11, 22, 55, 114, 264, 462, 798, 1015, 1294, 1180, 1035, 676, 477, 243, 149, 57, 36, 13, 8, 2, 4, 1, 1, 1, 2, 4, 11, 22, 56, 121, 303, 614, 1264, 2042, 2348, 3995, 4755, 4272, 3910, 2680, 1977, 1078, 697, 300, 189, 60, 50, 15, 12, 0, 3, 0, 1
Offset: 1

Views

Author

Rico Zöllner and Konrad Handrich, Sep 30 2024

Keywords

Comments

Posets whose Hasse diagram looks the same if it is turned upside down.
The dual poset P* of the poset P is defined by: s ≤ t in P* if and only if t ≤ s in P. If P and P* are isomorphic, then P is called self-dual.

Examples

			The table starts:
1 ;
1 1 ;
1 1 1 ;
1 1 2 2 2 ;
1 1 2 3 5 2 1 ;
1 1 2 4 9 11 12 5 4 1 ;
1 1 2 4 10 16 26 22 21 10 5 0 1 ;
1 1 2 4 11 20 44 65 98 86 79 41 25 8 4 2 2 ;
1 1 2 4 11 21 51 92 175 220 276 237 208 103 67 25 18 5 3 0 1 ;
1 1 2 4 11 22 55 114 264 462 798 1015 1294 1180 1035 676 477 243 149 57 36 13 8 2 4 1;
...
		

References

  • R. P. Stanley, Enumerative Combinatorics I, 2nd. ed., pp. 277.

Crossrefs

Showing 1-7 of 7 results.