Salah Uddin Mohammad has authored 11 sequences. Here are the ten most recent ones:
A379608
Number of unlabeled Riordan posets with n elements.
Original entry on oeis.org
1, 2, 5, 11, 33, 74, 144, 232, 639
Offset: 1
For example, all the posets up to 3 elements are Riordan posets.
A356558
Triangle read by rows: T(n,k), where n, k >= 2, is the number of n-element unlabeled connected series-parallel posets with k ordinal terms that are either the singleton or disconnected posets.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 16, 9, 4, 1, 52, 31, 14, 5, 1, 188, 108, 52, 20, 6, 1, 690, 402, 193, 80, 27, 7, 1, 2638, 1523, 744, 315, 116, 35, 8, 1, 10272, 5934, 2908, 1261, 483, 161, 44, 9, 1, 40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1
Offset: 2
Triangle begins:
1;
2, 1;
5, 3, 1;
16, 9, 4, 1;
52, 31, 14, 5, 1;
188, 108, 52, 20, 6, 1;
690, 402, 193, 80, 27, 7, 1;
2638, 1523, 744, 315, 116, 35, 8, 1;
10272, 5934, 2908, 1261, 483, 161, 44, 9, 1;
40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1;
The connected posets counted in the first three rows of the triangle are shown by using the Hasse diagram as follows:
-------
o
|
o
--------------------------
| o
o o o | |
/ \ \ / | o
o o o | |
| o
----------------------------------------------------------
o o o o o o | |
/|\ \|/ |X| | | o
o o o o o o | o o o o | |
| | \ / / \ | o
o o | o o o o | |
| / \ | / \ | \ / | o
o o o \ | o o o o | |
\ / | \ | | o
o o o | |
A354693
Number of unlabeled prime posets with n elements.
Original entry on oeis.org
1, 0, 0, 1, 4, 28, 234, 2585, 36326, 646405, 14528011, 412212506
Offset: 1
- S. M. Khamis, On numerical counting of prime, UPO, and the general type of posets according to heights, Congressus Numerantium, 146 (2000), 157-171.
- S. M. Khamis, Recognition of prime posets and one of its applications, J. Egypt. Math. Soc., 14 (1) (2006), 5-13.
A352460
Triangle read by rows: T(n,k), 2 <= k < n is the number of n-element k-ary unlabeled rooted trees where a subtree consisting of h + 1 nodes has exactly min{h,k} subtrees.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 3, 2, 1, 1, 5, 4, 3, 2, 1, 1, 9, 6, 5, 3, 2, 1, 1, 13, 10, 6, 5, 3, 2, 1, 1, 23, 15, 10, 7, 5, 3, 2, 1, 1, 35, 24, 14, 10, 7, 5, 3, 2, 1, 1, 61, 39, 23, 14, 11, 7, 5, 3, 2, 1, 1, 98, 63, 34, 21, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 3
Triangle begins:
1;
1, 1;
2, 1, 1;
2, 2, 1, 1;
4, 3, 2, 1, 1;
5, 4, 3, 2, 1, 1;
9, 6, 5, 3, 2, 1, 1;
13, 10, 6, 5, 3, 2, 1, 1;
23, 15, 10, 7, 5, 3, 2, 1, 1;
35, 24, 14, 10, 7, 5, 3, 2, 1, 1;
61, 39, 23, 14, 11, 7, 5, 3, 2, 1, 1;
98, 63, 34, 21, 14, 11, 7, 5, 3, 2, 1, 1;
In particular, the rooted trees counted in the first three rows of the triangle are shown by using the Hasse diagram as follows:
---------
o o
\ /
o
----------------------
o |
| |
o o | o o o
\ / | \ | /
o | o
------------------------------------------------------
o o o o | o |
\ / | | | | |
o o o o | o o o | o o o o
\ / \ / | \ | / | \ \ / /
o o | o | o
A350783
Triangle read by rows: T(n,k) is the number of n-element unlabeled N-free posets with k connected components.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 31, 12, 4, 1, 1, 115, 46, 13, 4, 1, 1, 474, 173, 49, 13, 4, 1, 1, 2097, 727, 188, 50, 13, 4, 1, 1, 9967, 3195, 795, 191, 50, 13, 4, 1, 1, 50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 1, 1;
9, 4, 1, 1;
31, 12, 4, 1, 1;
115, 46, 13, 4, 1, 1;
474, 173, 49, 13, 4, 1, 1;
2097, 727, 188, 50, 13, 4, 1, 1;
9967, 3195, 795, 191, 50, 13, 4, 1, 1;
50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1;
...
A350772
Triangle read by rows: T(n,k) is the number of n-element unlabeled series-parallel posets with k connected components.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 30, 12, 4, 1, 1, 103, 45, 13, 4, 1, 1, 375, 160, 48, 13, 4, 1, 1, 1400, 613, 175, 49, 13, 4, 1, 1, 5380, 2354, 680, 178, 49, 13, 4, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 1, 1;
9, 4, 1, 1;
30, 12, 4, 1, 1;
103, 45, 13, 4, 1, 1;
375, 160, 48, 13, 4, 1, 1;
1400, 613, 175, 49, 13, 4, 1, 1;
5380, 2354, 680, 178, 49, 13, 4, 1, 1;
...
A350635
Triangle read by rows: T(n,k) is the number of n-element unlabeled P-series with k connected components.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 10, 4, 1, 1, 31, 28, 11, 4, 1, 1, 63, 67, 31, 11, 4, 1, 1, 127, 167, 80, 32, 11, 4, 1, 1, 255, 388, 213, 83, 32, 11, 4, 1, 1, 511, 908, 534, 226, 84, 32, 11, 4, 1, 1, 1023, 2053, 1343, 580, 229, 84, 32, 11, 4, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 1, 1;
7, 4, 1, 1;
15, 10, 4, 1, 1;
31, 28, 11, 4, 1, 1;
63, 67, 31, 11, 4, 1, 1;
127, 167, 80, 32, 11, 4, 1, 1;
...
-
B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x))
T(n)=[Vecrev(p/y) | p<-Vec(-1 + exp(sum(k=1, n, y^k*B(x^k)/k + O(x*x^n))))]
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 13 2022
A349276
Number of unlabeled P-series with n elements.
Original entry on oeis.org
1, 2, 5, 13, 31, 76, 178, 423, 988, 2312, 5361, 12427, 28626, 65813, 150700, 344232, 783832, 1780650, 4034591, 9121571, 20576349, 46322816, 104079338, 233421517, 522574991, 1167974002, 2606282841, 5806953923, 12919314397, 28702716868, 63682839588, 141111193270
Offset: 1
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
max(1, 2^(d-1)-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jan 05 2022
-
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j]*Sum[d*
Max[1, 2^(d - 1) - 1], {d, Divisors[j]}], {j, 1, n}]/n];
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={EulerT(Vec((1 -2*x +2*x^2)/((1-x)*(1-2*x)) + O(x*x^n)))} \\ Andrew Howroyd, Nov 19 2021
A349488
Number of unlabeled disconnected P-series with n elements.
Original entry on oeis.org
0, 1, 2, 6, 16, 45, 115, 296, 733, 1801, 4338, 10380, 24531, 57622, 134317, 311465, 718297, 1649579, 3772448, 8597284, 19527774, 44225665, 99885035, 225032910, 505797776, 1134419571, 2539173978, 5672736196, 12650878942, 28165845957, 62609097765, 138963709623
Offset: 1
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d*
max(1, 2^(d-1)-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> b(n)-max(1, 2^(n-1)-1):
seq(a(n), n=1..35); # Alois P. Heinz, Jan 05 2022
-
b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Sum[d*
Max[1, 2^(d-1) - 1], {d, Divisors[j]}], {j, 1, n}]/n];
a[n_] := b[n] - Max[1, 2^(n-1)-1];
Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Mar 11 2022, Alois P. Heinz *)
A349367
Number of n-element unlabeled disconnected N-free posets.
Original entry on oeis.org
0, 1, 2, 6, 18, 65, 241, 984, 4250, 19590, 95484, 491459, 2660030, 15100494, 89648378
Offset: 1
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
- Salah Uddin Mohammad, Md. Shah Noor, and Md. Rashed Talukder, An Exact Enumeration of the Unlabeled Disconnected Posets, J. Int. Seq., Vol. 25 (2022), Article 22.5.4.
Comments