cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Salah Uddin Mohammad

Salah Uddin Mohammad's wiki page.

Salah Uddin Mohammad has authored 11 sequences. Here are the ten most recent ones:

A379608 Number of unlabeled Riordan posets with n elements.

Original entry on oeis.org

1, 2, 5, 11, 33, 74, 144, 232, 639
Offset: 1

Author

Salah Uddin Mohammad, Dec 27 2024

Keywords

Comments

Posets associated to binary Riordan matrices are called Riordan posets.

Examples

			For example, all the posets up to 3 elements are Riordan posets.
		

Crossrefs

Extensions

a(9) from Salah Uddin Mohammad, Jun 28 2025

A356558 Triangle read by rows: T(n,k), where n, k >= 2, is the number of n-element unlabeled connected series-parallel posets with k ordinal terms that are either the singleton or disconnected posets.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 16, 9, 4, 1, 52, 31, 14, 5, 1, 188, 108, 52, 20, 6, 1, 690, 402, 193, 80, 27, 7, 1, 2638, 1523, 744, 315, 116, 35, 8, 1, 10272, 5934, 2908, 1261, 483, 161, 44, 9, 1, 40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1
Offset: 2

Author

Salah Uddin Mohammad, Aug 12 2022

Keywords

Comments

If a poset P is obtained by taking the ordinal sum of the posets A and B, then the posets A and B are called the ordinal terms of P.

Examples

			Triangle begins:
      1;
      2,     1;
      5,     3,     1;
     16,     9,     4,    1;
     52,    31,    14,    5,    1;
    188,   108,    52,   20,    6,   1;
    690,   402,   193,   80,   27,   7,   1;
   2638,  1523,   744,  315,  116,  35,   8,  1;
  10272,  5934,  2908, 1261,  483, 161,  44,  9,  1;
  40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1;
The connected posets counted in the first three rows of the triangle are shown by using the Hasse diagram as follows:
-------
  o
  |
  o
--------------------------
                  |   o
    o     o   o   |   |
   / \     \ /    |   o
  o   o     o     |   |
                  |   o
----------------------------------------------------------
    o    o o o   o o    |                           |
   /|\    \|/    |X|    |                           |   o
  o o o    o     o o    |     o     o   o     o     |   |
                        |     |      \ /     / \    |   o
    o           o       |     o       o     o   o   |   |
    |          / \      |    / \      |      \ /    |   o
    o   o     o   \     |   o   o     o       o     |   |
     \ /      |    \    |                           |   o
      o       o     o   |                           |
		

Crossrefs

Row sums give A007453.
Cf. A263864 (all posets), A349488 (disconnected).

A354693 Number of unlabeled prime posets with n elements.

Original entry on oeis.org

1, 0, 0, 1, 4, 28, 234, 2585, 36326, 646405, 14528011, 412212506
Offset: 1

Author

Salah Uddin Mohammad, Jun 03 2022

Keywords

Comments

A poset P is called prime if it is not decomposable. A poset Q is called decomposable if Q can be obtained as the composition (lexicographic product) of the outer poset Q' and the inner posets Qi, 1 <= i <= r, where |Q'| = r > 1 and at least one of the posets Qi is nonsingleton.

Crossrefs

A352460 Triangle read by rows: T(n,k), 2 <= k < n is the number of n-element k-ary unlabeled rooted trees where a subtree consisting of h + 1 nodes has exactly min{h,k} subtrees.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 3, 2, 1, 1, 5, 4, 3, 2, 1, 1, 9, 6, 5, 3, 2, 1, 1, 13, 10, 6, 5, 3, 2, 1, 1, 23, 15, 10, 7, 5, 3, 2, 1, 1, 35, 24, 14, 10, 7, 5, 3, 2, 1, 1, 61, 39, 23, 14, 11, 7, 5, 3, 2, 1, 1, 98, 63, 34, 21, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 3

Author

Salah Uddin Mohammad, Mar 17 2022

Keywords

Examples

			Triangle begins:
    1;
    1,  1;
    2,  1,  1;
    2,  2,  1,  1;
    4,  3,  2,  1,  1;
    5,  4,  3,  2,  1,  1;
    9,  6,  5,  3,  2,  1, 1;
   13, 10,  6,  5,  3,  2, 1, 1;
   23, 15, 10,  7,  5,  3, 2, 1, 1;
   35, 24, 14, 10,  7,  5, 3, 2, 1, 1;
   61, 39, 23, 14, 11,  7, 5, 3, 2, 1, 1;
   98, 63, 34, 21, 14, 11, 7, 5, 3, 2, 1, 1;
In particular, the rooted trees counted in the first three rows of the triangle are shown by using the Hasse diagram as follows:
  ---------
    o   o
     \ /
      o
  ----------------------
    o       |
    |       |
    o   o   |   o  o  o
     \ /    |    \ | /
      o     |      o
  ------------------------------------------------------
    o   o        o   o   |   o         |
     \ /         |   |   |   |         |
      o   o      o   o   |   o  o  o   |   o  o   o  o
       \ /        \ /    |    \ | /    |    \  \ /  /
        o          o     |      o      |        o
		

Crossrefs

A350783 Triangle read by rows: T(n,k) is the number of n-element unlabeled N-free posets with k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 31, 12, 4, 1, 1, 115, 46, 13, 4, 1, 1, 474, 173, 49, 13, 4, 1, 1, 2097, 727, 188, 50, 13, 4, 1, 1, 9967, 3195, 795, 191, 50, 13, 4, 1, 1, 50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1
Offset: 1

Author

Salah Uddin Mohammad, Jan 16 2022

Keywords

Examples

			Triangle begins:
      1;
      1,     1;
      3,     1,    1;
      9,     4,    1,   1;
     31,    12,    4,   1,   1;
    115,    46,   13,   4,   1,  1;
    474,   173,   49,  13,   4,  1,  1;
   2097,   727,  188,  50,  13,  4,  1, 1;
   9967,  3195,  795, 191,  50, 13,  4, 1, 1;
  50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1;
  ...
		

Crossrefs

Row sums give A202182.
Column 1 is A202180.
Cf. A263864 (all posets), A349488 (disconnected).

A350772 Triangle read by rows: T(n,k) is the number of n-element unlabeled series-parallel posets with k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 30, 12, 4, 1, 1, 103, 45, 13, 4, 1, 1, 375, 160, 48, 13, 4, 1, 1, 1400, 613, 175, 49, 13, 4, 1, 1, 5380, 2354, 680, 178, 49, 13, 4, 1, 1
Offset: 1

Author

Salah Uddin Mohammad, Jan 14 2022

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     3,    1,   1;
     9,    4,   1,   1;
    30,   12,   4,   1,  1;
   103,   45,  13,   4,  1,  1;
   375,  160,  48,  13,  4,  1, 1;
  1400,  613, 175,  49, 13,  4, 1, 1;
  5380, 2354, 680, 178, 49, 13, 4, 1, 1;
  ...
		

Crossrefs

Row sums give A003430.
Column 1 is A007453.
Cf. A263864 (all posets), A349488 (disconnected).

A350635 Triangle read by rows: T(n,k) is the number of n-element unlabeled P-series with k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 10, 4, 1, 1, 31, 28, 11, 4, 1, 1, 63, 67, 31, 11, 4, 1, 1, 127, 167, 80, 32, 11, 4, 1, 1, 255, 388, 213, 83, 32, 11, 4, 1, 1, 511, 908, 534, 226, 84, 32, 11, 4, 1, 1, 1023, 2053, 1343, 580, 229, 84, 32, 11, 4, 1, 1
Offset: 1

Author

Salah Uddin Mohammad, Jan 09 2022

Keywords

Examples

			Triangle begins:
    1;
    1,   1;
    3,   1,  1;
    7,   4,  1,  1;
   15,  10,  4,  1,  1;
   31,  28, 11,  4,  1, 1;
   63,  67, 31, 11,  4, 1, 1;
  127, 167, 80, 32, 11, 4, 1, 1;
  ...
		

Crossrefs

Row sums give A349276.
Column 1 is A255047(n-1).
Cf. A263864 (all posets), A349488 (disconnected).

Programs

  • PARI
    B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x))
    T(n)=[Vecrev(p/y) | p<-Vec(-1 + exp(sum(k=1, n, y^k*B(x^k)/k + O(x*x^n))))]
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 13 2022

Formula

G.f.: -1 + exp(Sum_{k>=1} y^k*B(x^k)/k) where B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x)). - Andrew Howroyd, Jan 13 2022

A349276 Number of unlabeled P-series with n elements.

Original entry on oeis.org

1, 2, 5, 13, 31, 76, 178, 423, 988, 2312, 5361, 12427, 28626, 65813, 150700, 344232, 783832, 1780650, 4034591, 9121571, 20576349, 46322816, 104079338, 233421517, 522574991, 1167974002, 2606282841, 5806953923, 12919314397, 28702716868, 63682839588, 141111193270
Offset: 1

Author

Salah Uddin Mohammad, Nov 12 2021

Keywords

Comments

The class of all P-series is a subclass of the class of series-parallel posets and it contains the class of P-graphs as a subclass.
A poset is called a P-graph if it can be expressed as the ordinal sum of the antichain posets (including the singleton poset).
A poset is called a P-series if it is either a P-graph or it can be expressed as the direct sum of the P-graphs.
For example, all the 3-element posets are P-series, where only the connected posets and the antichains are P-graphs. On the other hand, the 4-element poset <{x,y,z,w},{x<.z, z<.w, y<.w, x||y, y||z}> and its dual are both series-parallel which are not the P-series. Here, by 'x<.z' we mean 'x is covered by z'.

Crossrefs

Cf. A003430 (series-parallel posets), A255047, A349488.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
          max(1, 2^(d-1)-1), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 05 2022
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j]*Sum[d*
         Max[1, 2^(d - 1) - 1], {d, Divisors[j]}], {j, 1, n}]/n];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={EulerT(Vec((1 -2*x +2*x^2)/((1-x)*(1-2*x)) + O(x*x^n)))} \\ Andrew Howroyd, Nov 19 2021

Formula

a(n) = A255047(n-1) + A349488(n).
G.f: -1 + exp(Sum_{k>=1} B(x^k)/k) where B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x)). - Andrew Howroyd, Jan 06 2022

A349488 Number of unlabeled disconnected P-series with n elements.

Original entry on oeis.org

0, 1, 2, 6, 16, 45, 115, 296, 733, 1801, 4338, 10380, 24531, 57622, 134317, 311465, 718297, 1649579, 3772448, 8597284, 19527774, 44225665, 99885035, 225032910, 505797776, 1134419571, 2539173978, 5672736196, 12650878942, 28165845957, 62609097765, 138963709623
Offset: 1

Author

Salah Uddin Mohammad, Nov 19 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d*
          max(1, 2^(d-1)-1), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> b(n)-max(1, 2^(n-1)-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Jan 05 2022
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Sum[d*
         Max[1, 2^(d-1) - 1], {d, Divisors[j]}], {j, 1, n}]/n];
    a[n_] := b[n] - Max[1, 2^(n-1)-1];
    Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Mar 11 2022, Alois P. Heinz *)

Formula

a(n) = A349276(n) - A255047(n-1).

A349367 Number of n-element unlabeled disconnected N-free posets.

Original entry on oeis.org

0, 1, 2, 6, 18, 65, 241, 984, 4250, 19590, 95484, 491459, 2660030, 15100494, 89648378
Offset: 1

Author

Salah Uddin Mohammad, Nov 15 2021

Keywords

Crossrefs

Formula

a(n) = A202182(n) - A202180(n).