A349276
Number of unlabeled P-series with n elements.
Original entry on oeis.org
1, 2, 5, 13, 31, 76, 178, 423, 988, 2312, 5361, 12427, 28626, 65813, 150700, 344232, 783832, 1780650, 4034591, 9121571, 20576349, 46322816, 104079338, 233421517, 522574991, 1167974002, 2606282841, 5806953923, 12919314397, 28702716868, 63682839588, 141111193270
Offset: 1
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
max(1, 2^(d-1)-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jan 05 2022
-
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j]*Sum[d*
Max[1, 2^(d - 1) - 1], {d, Divisors[j]}], {j, 1, n}]/n];
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={EulerT(Vec((1 -2*x +2*x^2)/((1-x)*(1-2*x)) + O(x*x^n)))} \\ Andrew Howroyd, Nov 19 2021
A350635
Triangle read by rows: T(n,k) is the number of n-element unlabeled P-series with k connected components.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 10, 4, 1, 1, 31, 28, 11, 4, 1, 1, 63, 67, 31, 11, 4, 1, 1, 127, 167, 80, 32, 11, 4, 1, 1, 255, 388, 213, 83, 32, 11, 4, 1, 1, 511, 908, 534, 226, 84, 32, 11, 4, 1, 1, 1023, 2053, 1343, 580, 229, 84, 32, 11, 4, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 1, 1;
7, 4, 1, 1;
15, 10, 4, 1, 1;
31, 28, 11, 4, 1, 1;
63, 67, 31, 11, 4, 1, 1;
127, 167, 80, 32, 11, 4, 1, 1;
...
-
B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x))
T(n)=[Vecrev(p/y) | p<-Vec(-1 + exp(sum(k=1, n, y^k*B(x^k)/k + O(x*x^n))))]
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 13 2022
A350772
Triangle read by rows: T(n,k) is the number of n-element unlabeled series-parallel posets with k connected components.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 30, 12, 4, 1, 1, 103, 45, 13, 4, 1, 1, 375, 160, 48, 13, 4, 1, 1, 1400, 613, 175, 49, 13, 4, 1, 1, 5380, 2354, 680, 178, 49, 13, 4, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 1, 1;
9, 4, 1, 1;
30, 12, 4, 1, 1;
103, 45, 13, 4, 1, 1;
375, 160, 48, 13, 4, 1, 1;
1400, 613, 175, 49, 13, 4, 1, 1;
5380, 2354, 680, 178, 49, 13, 4, 1, 1;
...
A350783
Triangle read by rows: T(n,k) is the number of n-element unlabeled N-free posets with k connected components.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 31, 12, 4, 1, 1, 115, 46, 13, 4, 1, 1, 474, 173, 49, 13, 4, 1, 1, 2097, 727, 188, 50, 13, 4, 1, 1, 9967, 3195, 795, 191, 50, 13, 4, 1, 1, 50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 1, 1;
9, 4, 1, 1;
31, 12, 4, 1, 1;
115, 46, 13, 4, 1, 1;
474, 173, 49, 13, 4, 1, 1;
2097, 727, 188, 50, 13, 4, 1, 1;
9967, 3195, 795, 191, 50, 13, 4, 1, 1;
50315, 15017, 3502, 810, 192, 50, 13, 4, 1, 1;
...
A356558
Triangle read by rows: T(n,k), where n, k >= 2, is the number of n-element unlabeled connected series-parallel posets with k ordinal terms that are either the singleton or disconnected posets.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 16, 9, 4, 1, 52, 31, 14, 5, 1, 188, 108, 52, 20, 6, 1, 690, 402, 193, 80, 27, 7, 1, 2638, 1523, 744, 315, 116, 35, 8, 1, 10272, 5934, 2908, 1261, 483, 161, 44, 9, 1, 40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1
Offset: 2
Triangle begins:
1;
2, 1;
5, 3, 1;
16, 9, 4, 1;
52, 31, 14, 5, 1;
188, 108, 52, 20, 6, 1;
690, 402, 193, 80, 27, 7, 1;
2638, 1523, 744, 315, 116, 35, 8, 1;
10272, 5934, 2908, 1261, 483, 161, 44, 9, 1;
40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1;
The connected posets counted in the first three rows of the triangle are shown by using the Hasse diagram as follows:
-------
o
|
o
--------------------------
| o
o o o | |
/ \ \ / | o
o o o | |
| o
----------------------------------------------------------
o o o o o o | |
/|\ \|/ |X| | | o
o o o o o o | o o o o | |
| | \ / / \ | o
o o | o o o o | |
| / \ | / \ | \ / | o
o o o \ | o o o o | |
\ / | \ | | o
o o o | |
Showing 1-5 of 5 results.
Comments