cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000112 Number of partially ordered sets ("posets") with n unlabeled elements.

Original entry on oeis.org

1, 1, 2, 5, 16, 63, 318, 2045, 16999, 183231, 2567284, 46749427, 1104891746, 33823827452, 1338193159771, 68275077901156, 4483130665195087
Offset: 0

Views

Author

Keywords

Comments

Also number of fixed effects ANOVA models with n factors, which may be both crossed and nested.

Examples

			R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 (or 2nd. ed., Fig. 3.1, p. 243) shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of unlabeled T_0 topologies with n points. For example, non-isomorphic representatives of the a(4) = 16 topologies are:
  {}{1}{12}{123}{1234}
  {}{1}{2}{12}{123}{1234}
  {}{1}{12}{13}{123}{1234}
  {}{1}{12}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{1234}
  {}{1}{2}{12}{123}{124}{1234}
  {}{1}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{1234}
  {}{1}{2}{12}{13}{24}{123}{124}{1234}
  {}{1}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{124}{1234}
  {}{1}{2}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{14}{23}{123}{124}{134}{1234}
  {}{1}{2}{3}{4}{12}{13}{14}{23}{24}{34}{123}{124}{134}{234}{1234}
(End)
		

References

  • G. Birkhoff, Lattice Theory, 1961, p. 4.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • J. L. Davison, Asymptotic enumeration of partial orders. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 53 (1986), 277--286. MR0885256 (88c:06001)
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. I, 2nd. ed., Chap. 3, pp. 241ff; Vol. 2, Problem 5.39, p. 88.
  • For further references concerning the enumeration of topologies and posets see under A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A006057.
Cf. A079263, A079265, A065066 (refined by maximal elements), A342447 (refined by number of arcs).
Row sums of A263859. Euler transform of A000608.

Extensions

a(15)-a(16) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jan 04 2006

A048194 Total number of split graphs (chordal + chordal complement) on n vertices.

Original entry on oeis.org

1, 2, 4, 9, 21, 56, 164, 557, 2223, 10766, 64956, 501696, 5067146, 67997750, 1224275498, 29733449510, 976520265678, 43425320764422, 2616632636247976, 213796933371366930, 23704270652844196754, 3569464106212250952762, 730647291666881838671052
Offset: 1

Views

Author

Keywords

Comments

Also number of bipartite graphs with n vertices and no isolated vertices in distinguished bipartite block, up to isomorphism; so a(n) equals first differences of A049312. - Vladeta Jovovic, Jun 17 2000
All split graphs are perfect. - Falk Hüffner, Nov 29 2015
Inverse Euler transform gives A007776 with initial 1. - Andrew Howroyd, Oct 03 2018

Crossrefs

Detlef Pauly remarks that this is the unlabeled analog of A001831.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    a[d_] := Sum[A[n, d - n], {n, 0, d}] - Sum[A[n, d - n - 1], {n, 0, d - 1}];
    Table[a[n], {n, 1, 25}] (* Jean-François Alcover, May 26 2019, after Alois P. Heinz in A049312 *)

Formula

a(n) = A049312(n) - A049312(n-1) (see the Collins and Trenk link, Thms. 5 and 15). - Justin M. Troyka, Oct 29 2018
a(n) ~ A049312(n) ~ (1/n!) * Sum_{k=0..n} binomial(n,k) * 2^(k(n-k)) (see the Troyka link, Thms. 3.7 and 3.10). - Justin M. Troyka, Oct 29 2018
a(n) = A263859(n,1) + 1. - Geoffrey Critzer, Feb 05 2024

A342500 T(n,k) is the number of connected unlabeled posets with n elements and rank k: triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 5, 1, 0, 10, 24, 9, 1, 0, 27, 123, 73, 14, 1, 0, 88, 734, 638, 169, 20, 1, 0, 328, 5184, 6460, 2178, 334, 27, 1, 0, 1460, 44518, 78385, 32468, 5880, 594, 35, 1, 0, 7799, 472859, 1164966, 581533, 118933, 13605, 979, 44, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 14 2021

Keywords

Comments

This is a variant of A263859 admitting only connected posets.

Examples

			The table starts in row n=1 shows ranks k>=0:
1: 1
2: 0 1
3: 0 2 1
4: 0 4 5 1
5: 0 10 24 9 1
6: 0 27 123 73 14 1
7: 0 88 734 638 169 20 1
8: 0 328 5184 6460 2178 334 27 1
9: 0 1460 44518 78385 32468 5880 594 35 1
10: 0 7799 472859 1164966 581533 118933 13605 979 44 1
		

Crossrefs

Cf. A000608 (row sums), A007776 (rank 1), A263859, A000096 (subdiagonal), A342501 (labeled).

Formula

T(n,0) = 0 for k>0; due to the connectivity constraint.
T(n,n-1) = 1; the poset with elements in a single chain.

A361953 Triangle read by rows: T(n,k) is the number of unlabeled weakly graded (ranked) posets with n elements and rank k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 6, 1, 0, 1, 20, 30, 9, 1, 0, 1, 55, 145, 66, 12, 1, 0, 1, 163, 745, 465, 111, 15, 1, 0, 1, 556, 4245, 3444, 964, 165, 18, 1, 0, 1, 2222, 27880, 28024, 8618, 1652, 228, 21, 1, 0, 1, 10765, 218058, 259974, 83322, 16569, 2556, 300, 24, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 31 2023

Keywords

Comments

Here weakly graded means that there exists a rank function rk from the poset to the integers such that whenever v covers w in the poset, we have rk(v) = rk(w) + 1.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   3,    1;
  0, 1,   8,    6,    1;
  0, 1,  20,   30,    9,   1;
  0, 1,  55,  145,   66,  12,   1;
  0, 1, 163,  745,  465, 111,  15,  1;
  0, 1, 556, 4245, 3444, 964, 165, 18, 1;
  ...
		

Crossrefs

Row sums are A361920.
The labeled version is A361951.
Cf. A263859, A361952, A361954 (connected).

Programs

  • PARI
    \\ See link for program code.
    { my(A=A361953tabl(8)); for(i=1, #A, print(A[i, 1..i])) }

Formula

G.f. of column k >= 2: C(k,x)/C(k-1,x) - C(k-1,x)/C(k-2,x) where C(k,x) is the g.f. of column k of A361952.

A369919 Triangular array read by rows. T(n,k) is the number of labeled posets on [n] of rank at most one with exactly k elements of positive indegree, n >= 0, 0 <= k <= max{0,n-1}.

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 3, 1, 28, 54, 4, 1, 75, 490, 270, 5, 1, 186, 3375, 6860, 1215, 6, 1, 441, 20181, 118125, 84035, 5103, 7, 1, 1016, 111132, 1668296, 3543750, 941192, 20412, 8, 1, 2295, 580644, 21003948, 116363646, 95681250, 9882516, 78732, 9
Offset: 0

Views

Author

Geoffrey Critzer, Feb 05 2024

Keywords

Comments

The rank of a poset is the number of cover relations in a maximal chain.
Equivalently, T(n,k) is the number of labeled posets P on [n] of rank at most one such that |image(P)| = k.

Examples

			Triangle begins
  1;
  1;
  1,   2;
  1,   9,    3;
  1,  28,   54,    4;
  1,  75,  490,  270,    5;
  1, 186, 3375, 6860, 1215, 6;
  ...
		

Crossrefs

Cf. A001831 (row sums), A058877, A263859, A369921.

Programs

  • Mathematica
    nn = 9; Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[Series[ Sum[ Exp[y  x]^(2^n - 1)  x^n/n!, {n, 0, nn}], {x, 0, nn}], {x, y}]] // Grid

Formula

E.g.f.: Sum_{n>=0} x^n/n!*exp(y*x)^(2^n-1).
T(n,1) = A058877(n).
Showing 1-5 of 5 results.