cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A084268 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes having chromatic number k, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 12, 16, 4, 1, 1, 34, 84, 31, 5, 1, 1, 87, 579, 318, 52, 6, 1, 1, 302, 5721, 5366, 867, 81, 7, 1, 1, 1118, 87381, 155291, 28722, 2028, 118, 8, 1, 1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1, 1, 32302, 78315231, 675054876, 250530482, 14662562, 393963, 8214, 222, 10, 1
Offset: 1

Views

Author

Eric W. Weisstein, May 24 2003

Keywords

Comments

T(n,1) = T(n,n) = 1 (here we count the empty graph and the complete graph). T(n,n-1) = n-1 (here we count the graphs with clique number equal to n-1). - Geoffrey Critzer, Oct 12 2016
Row sums give A000088. - Joerg Arndt, Oct 13 2016

Examples

			Triangle begins:
  1;
  1,    1;
  1,    2,       1;
  1,    6,       3,       1;
  1,   12,      16,       4,       1;
  1,   34,      84,      31,       5,      1;
  1,   87,     579,     318,      52,      6,    1;
  1,  302,    5721,    5366,     867,     81,    7,   1;
  1, 1118,   87381,  155291,   28722,   2028,  118,   8, 1;
  1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1;
  ...
		

Crossrefs

Partial row sums include A033995, A076315, A076316, A076317, A076318, A076319, A076320, A076321.
Row sums are A000088.
Cf. A084269 (connected), A115597 (essentially the same sequence).

Programs

  • Sage
    # prints triangle with a leading zero in each row
    for n in range(1, 8) :
        st = [0 for j in range(n+1)]
        G = graphs(n)
        for g in G :
            st[ g.chromatic_number() ] += 1
        print(st)
    # Joerg Arndt, Oct 13 2016

Extensions

Offset corrected by Joerg Arndt, Oct 13 2016
a(36)-a(55) from Joerg Arndt, Oct 15 2016
a(56)-a(66) from Andrew Howroyd, Dec 02 2018

A076322 Number of connected 3-colorable (i.e., chromatic number <= 3) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 5, 17, 81, 519, 5218, 81677, 2014360, 76140741, 4303246908
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Programs

Formula

Inverse Euler transform of A076315. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Jinyuan Wang, Feb 23 2020

A076323 Number of connected 4-colorable (i.e., chromatic number <= 4) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 20, 107, 801, 10227, 231228, 9708788, 743177051, 100580560531
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    A076316 = Cases[Import["https://oeis.org/A076316/b076316.txt", "Table"], {, }][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    EulerInvTransform[A076316] (* Jean-François Alcover, Sep 25 2019, updated Mar 17 2020 *)

Formula

Inverse Euler transform of A076316. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Sean A. Irvine, Apr 13 2025

A076324 Number of connected 5-colorable (i.e., chromatic number <= 5) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 111, 847, 11036, 259022, 11599009, 991757695
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076317. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076325 Number of connected 6-colorable (i.e., chromatic number <= 6) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 112, 852, 11110, 260962, 11712281, 1006302720
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076318. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076326 Number of connected 7-colorable (i.e., chromatic number <= 7) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 112, 853, 11116, 261072, 11716406, 1006692303
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076319. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076327 Number of connected 8-colorable (i.e., chromatic number <= 8) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 112, 853, 11117, 261079, 11716562, 1006700343
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076320. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076328 Number of connected 9-colorable (i.e., chromatic number <= 9) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716570, 1006700555
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076321. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A363044 Triangle read by rows: T(n,k) is the number of unlabeled connected graphs with n nodes and packing chromatic number k, 1 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 9, 10, 1, 0, 1, 21, 61, 28, 1, 0, 1, 48, 305, 409, 89, 1, 0, 1, 109, 1475, 5077, 4097, 357, 1, 0, 1, 247, 6623, 55005, 129904, 67529, 1770, 1, 0, 1, 564, 28540, 505098, 3378636, 5792187, 1999810, 11734, 1
Offset: 1

Views

Author

Pontus von Brömssen, May 14 2023

Keywords

Comments

The concept of the packing chromatic number was introduced by Goddard et al. (2008) under the name broadcast chromatic number. The term packing chromatic number was introduced by Brešar et al. (2007).

Examples

			Triangle begins:
  n\k| 1  2   3     4      5       6       7       8     9 10
  ---+-------------------------------------------------------
   1 | 1
   2 | 0  1
   3 | 0  1   1
   4 | 0  1   4     1
   5 | 0  1   9    10      1
   6 | 0  1  21    61     28       1
   7 | 0  1  48   305    409      89       1
   8 | 0  1 109  1475   5077    4097     357       1
   9 | 0  1 247  6623  55005  129904   67529    1770     1
  10 | 0  1 564 28540 505098 3378636 5792187 1999810 11734  1
		

Crossrefs

Cf. A001349 (row sums), A084269 (chromatic number), A363043 (not necessarily connected).

Formula

T(n,1) = 0 for n >= 2. (The only connected graph with packing chromatic number 1 is the 1-node graph.)
T(n,2) = 1 for n >= 2. (The only connected graphs with packing chromatic number 2 are the star graphs on at least 2 nodes.)
T(n,n) = 1. (The only connected graph with n nodes and packing chromatic number n is the complete graph on n nodes.)

A362894 Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes having Hadwiger number k, 1 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 3, 12, 5, 1, 0, 6, 50, 47, 8, 1, 0, 11, 230, 448, 152, 11, 1
Offset: 1

Views

Author

Peter Kagey, May 08 2023

Keywords

Comments

All planar graphs have Hadwiger number <= 4. The converse is not true since planar graphs also disallow a minor of K_{3,3}. - Andrew Howroyd, Jun 18 2025

Examples

			Triangle begins:
1;
0,  1;
0,  1,   1;
0,  2,   3,   1;
0,  3,  12,   5,   1;
0,  6,  50,  47,   8,  1;
0, 11, 230, 448, 152, 11, 1;
		

Crossrefs

Row sums are A001349.
Column 2 is A000055 for n > 1.
Subdiagonal is A024206.
Cf. A084269.
Cf. A032766 (n-cocktail party graph). A353212 (n-path complement graph).
Showing 1-10 of 10 results.