Original entry on oeis.org
1, 2, 4, 11, 33, 142, 822, 6910
Offset: 1
Original entry on oeis.org
1, 2, 4, 8, 19, 52, 194, 1016, 7982, 87835, 1228751, 19909759, 353222210
Offset: 0
A000168
a(n) = 2*3^n*(2*n)!/(n!*(n+2)!).
Original entry on oeis.org
1, 2, 9, 54, 378, 2916, 24057, 208494, 1876446, 17399772, 165297834, 1602117468, 15792300756, 157923007560, 1598970451545, 16365932856990, 169114639522230, 1762352559231660, 18504701871932430, 195621134074714260, 2080697516976506220, 22254416920705240440, 239234981897581334730, 2583737804493878415084
Offset: 0
G.f. = 1 + 2*x + 9*x^2 + 54*x^3 + 378*x^4 + 2916*x^5 + 24057*x^6 + 208494*x^7 + ...
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 319, 353.
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
- V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
- V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..925 [Terms 0 to 100 computed by T. D. Noe; terms 101 to 925 by G. C. Greubel, Jan 15 2017]
- Marie Albenque and Dominique Poulalhon, A Generic Method for Bijections between Blossoming Trees and Planar Maps, Electron. J. Combin., 22 (2015), #P2.38.
- J.-L. Baril, R. Genestier, A. Giorgetti, and A. Petrossian, Rooted planar maps modulo some patterns, Preprint 2016.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
- Valentin Bonzom, Guillaume Chapuy, Maciej Dolega, Enumeration of non-oriented maps via integrability, Alg. Combin. 5 (6) (2022) p 1363-1390, A.1.
- M. Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.
- M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, arXiv:math/0504018 [math.CO], 2005.
- Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
- R. Cori and B. Vauquelin, Planar maps are well labeled trees, Canad. J. Math., 33 (1981), 1023-1042.
- S. R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 516
- A. Giorgetti, R. Genestier, and V. Senni, Software Engineering and Enumerative Combinatorics, slides from a talk at MAP 2014.
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- C. Kassel, On combinatorial zeta functions, Slides from a talk, Potsdam, 2015.
- Sergey Kitaev, Anna de Mier, and Marc Noy, On the number of self-dual rooted maps, European J. Combin. 35 (2014), 377--387. MR3090510. See Eq. (1). - _N. J. A. Sloane_, May 19 2014
- Evgeniy Krasko and Alexander Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics (2019) Vol. 342, Issue 2, 584-599. Also arXiv:1709.03225 [math.CO].
- V. A. Liskovets, Enumeration of nonisomorphic planar maps, Journal of Graph Theory, Volume 5, Issue 1, pages 115-117, Spring 1981.
- Valery A. Liskovets, A reductive technique for enumerating non-isomorphic planar maps, Discrete Math. 156 (1996), no. 1-3, 197--217. MR1405018 (97f:05087) - From _N. J. A. Sloane_, Jun 03 2012
- R. C. Mullin, On the average activity of a spanning tree of a rooted map, J. Combin. Theory, 3 (1967), 103-121.
- R. C. Mullin, On the average activity of a spanning tree of a rooted map, J. Combin. Theory, 3 (1967), 103-121. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série, arXiv:0912.0072 [math.NT], 2009; FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics.
- C. Reutenauer and M. Robado, On an algebraicity theorem of Kontsevich, FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 241-248. - From _N. J. A. Sloane_, Dec 23 2012
- G. Schaeffer and P. Zinn-Justin, On the asymptotic number of plane curves and alternating knots, arXiv:math-ph/0304034, 2003-2004.
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
- Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015.
- Noam Zeilberger, Towards a mathematical science of programming, Preprint 2015.
- Noam Zeilberger, Linear lambda terms as invariants of rooted trivalent maps, arXiv preprint arXiv:1512.06751 [cs.LO], 2015.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030, March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Noam Zeilberger and Alain Giorgetti, A correspondence between rooted planar maps and normal planar lambda terms, arXiv:1408.5028 [cs.LO], 2014-2015; Logical Methods in Computer Science, vol. 11 (3:22), 2015, pp. 1-39.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
Rooted maps with n edges of genus g for 0 <= g <= 10: this sequence,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
-
[(2*Catalan(n)*3^n)/(n+2): n in [1..30]]; // Vincenzo Librandi, Sep 04 2014
-
A000168:=n->2*3^n*(2*n)!/(n!*(n+2)!);
-
Table[(2*3^n*(2n)!)/(n!(n+2)!),{n,0,20}] (* Harvey P. Dale, Jul 25 2011 *)
a[ n_] := If[ n < 0, 0, 2 3^n (2 n)!/(n! (n + 2)!)] (* Michael Somos, Nov 25 2013 *)
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1, 3, 12 x], {x, 0, n}] (* Michael Somos, Nov 25 2013 *)
-
{a(n) = if( n<0, 0, 2 * 3^n * (2*n)! / (n! * (n+2)!))}; /* Michael Somos, Nov 25 2013 */
A000944
Number of polyhedra (or 3-connected simple planar graphs) with n nodes.
Original entry on oeis.org
0, 0, 0, 1, 2, 7, 34, 257, 2606, 32300, 440564, 6384634, 96262938, 1496225352, 23833988129, 387591510244, 6415851530241, 107854282197058
Offset: 1
- H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, B15.
- M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
- B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
- Y. Y. Prokhorov, ed., Mnogogrannik [Polyhedron], Mathematical Encyclopedia Dictionary, Soviet Encyclopedia, 1988.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. M. Ziegler, Questions about polytopes, pp. 1195-1211 of Mathematics Unlimited - 2001 and Beyond, ed. B. Engquist and W. Schmid, Springer-Verlag, 2001.
- Gunnar Brinkmann and Brendan McKay, plantri and fullgen programs for generation of certain types of planar graph.
- Gunnar Brinkmann and Brendan McKay, plantri and fullgen programs for generation of certain types of planar graph [Cached copy, pdf file only, no active links, with permission]
- CombOS - Combinatorial Object Server, generate planar graphs
- A. J. W. Duijvestijn and P. J. Federico, The number of polyhedral (3-connected planar) graphs, Math. Comp. 37 (1981), no. 156, 523-532. MR0243424 (39 #4746).
- P. J. Federico, Enumeration of polyhedra: the number of 9-hedra, J. Combin. Theory, 7 (1969), 155-161.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001. See p. 155.
- Moritz Firsching, Realizability and inscribability for simplicial polytopes via nonlinear optimization. Math. Program. 166, No. 1-2 (A), 273-295 (2017). Table 1
- Komei Fukuda, Hiroyuki Miyata, and Sonoko Moriyama, Complete Enumeration of Small Realizable Oriented Matroids, arXiv:1204.0645 [math.CO], 2012; Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917. - From _N. J. A. Sloane_, Feb 16 2013
- Jorik Jooken, Computer-assisted graph theory: a survey, arXiv:2508.20825 [math.CO], 2025. See Ref. 196 at p. 5.
- A. B. Korchagin, Ordering Cellular Spaces with Application to Curves and Knots, Discrete Comput. Geom., 40 (2008), 289-311.
- G. P. Michon, Counting Polyhedra
- Eric Weisstein's World of Mathematics, Polyhedral Graph
A003094
Number of unlabeled connected planar simple graphs with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 6, 20, 99, 646, 5974, 71885, 1052805, 17449299, 313372298, 5942258308
Offset: 0
a(3) = 2 since the path o-o-o and the triangle are the two connected planar simple graphs on three nodes.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. J. Wilson, Introduction to Graph Theory, Academic Press, NY, 1972, p. 162.
- David Wasserman, Brendan McKay and Georg Grasegger, Table of n, a(n) for n = 0..13
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- E. Friedman, Illustration of small graphs
- Brendan McKay, Planar graphs
- N. J. A. Sloane, Transforms
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Weisstein's World of Mathematics, Planar Connected Graph
-
a[n_Integer?NonNegative] := a[n] = Module[{m, s, g}, s = Subsets[Range[n], {2}]; m = Length[s]; g = Graph[Range[n], UndirectedEdge @@@ #] & /@ (Pick[s, #, 1] & /@ (IntegerDigits[#, 2, m] & /@ Range[0, 2^m - 1])); Length[DeleteDuplicates[Select[Select[g, ConnectedGraphQ], PlanarGraphQ], IsomorphicGraphQ]]]; Table[a[n], {n, 0, 6}] (* Robert P. P. McKone, Oct 14 2023 *)
-
geng -c $n | planarg -q | countg -q # Georg Grasegger, Jul 06 2023
A007146
Number of unlabeled simple connected bridgeless graphs with n nodes.
Original entry on oeis.org
1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..40 (terms 1..22 from R. J. Mathar)
- P. Hanlon and R. W. Robinson, Counting bridgeless graphs, J. Combin. Theory, B 33 (1982), 276-305, Table III.
- Eric Weisstein's World of Mathematics, Bridgeless Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Simple Graph
- Gus Wiseman, The a(3) = 1 through a(5) = 11 connected bridgeless graphs.
Cf.
A005470 (number of simple graphs).
Cf.
A007145 (number of simple connected rooted bridgeless graphs).
Cf.
A052446 (number of simple connected bridged graphs).
Cf.
A263914 (number of simple bridgeless graphs).
Cf.
A263915 (number of simple bridged graphs).
Row sums of
A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are
A327109.
Graphs with non-spanning edge-connectivity >= 2 are
A327200.
2-vertex-connected graphs are
A013922.
Cf.
A000719,
A001349,
A002494,
A261919,
A327069,
A327071,
A327074,
A327075,
A327077,
A327109,
A327144,
A327146.
-
\\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020
Reference gives first 22 terms.
A021103
Number of two-connected (or biconnected) planar graphs with n nodes.
Original entry on oeis.org
0, 0, 0, 1, 3, 9, 44, 294, 2893, 36496, 545808, 9029737, 159563559, 2952794985, 56589742050
Offset: 0
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. See p. 229.
a(12)-a(14) from Gilbert Labelle (labelle.gilbert(AT)uqam.ca), Jan 20 2009
A066537
Number of planar graphs on n labeled nodes.
Original entry on oeis.org
1, 1, 2, 8, 64, 1023, 32071, 1823707, 163947848, 20402420291, 3209997749284, 604611323732576, 131861300077834966, 32577569614176693919, 8977083127683999891824, 2726955513946123452637877, 904755724004585279250537376, 325403988657293080813790670641
Offset: 0
Aart Blokhuis (aartb(AT)win.tue.nl), Jan 08 2002
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419.
- Keith M. Briggs and Gheorghe Coserea, Table of n, a(n) for n = 0..126, terms 0..42 from Keith M. Briggs.
- M. Bodirsky, C. Groepl and M. Kang, Generating Labeled Planar Graphs Uniformly At Random, ICALP03 Eindhoven, LNCS 2719, Springer Verlag (2003), 1095 - 1107.
- M. Bodirsky, C. Groepl and M. Kang, Generating Labeled Planar Graphs Uniformly At Random, Theoretical Computer Science, Volume 379, Issue 3, 15 June 2007, Pages 377-386.
- Keith M. Briggs, Combinatorial Graph Theory
- O. Gimenez and M. Noy, Asymptotic enumeration and limit laws of planar graphs, arXiv:math/0501269 [math.CO], 2005.
- Yu Nakahata, Jun Kawahara, Takashi Horiyama, Shin-ichi Minato, Implicit Enumeration of Topological-Minor-Embeddings and Its Application to Planar Subgraph Enumeration, arXiv:1911.07465 [cs.DS], 2019.
- A. Taraz, D. Osthus and H. J. Proemel, On random planar graphs, the number of planar graphs and their triangulations Journal of Combinatorial Theory, Series B, 88 (2003), 119-134.
-
Q(n,k) = { \\ c-nets with n-edges, k-vertices
if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
(binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
};
A100960_ser(N) = {
my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
g2=intformal(t^2/2*((1+d)/(1+x)-1)));
serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
};
A096331_seq(N) = Vec(subst(A100960_ser(N+2),'t,1));
A096332_seq(N) = {
my(x='x+O('x^(N+3)), b=x^2/2+serconvol(Ser(A096331_seq(N))*x^3, exp(x)));
Vec(serlaplace(intformal(serreverse(x/exp(b'))/x)));
};
A066537_seq(N) = {
my(x='x+O('x^(N+3)));
Vec(serlaplace(exp(serconvol(Ser(A096332_seq(N))*'x,exp(x)))));
};
A066537_seq(15) \\ Gheorghe Coserea, Aug 10 2017
More terms from Manuel Bodirsky (bodirsky(AT)informatik.hu-berlin.de), Sep 15 2003
A068551
a(n) = 4^n - binomial(2*n,n).
Original entry on oeis.org
0, 2, 10, 44, 186, 772, 3172, 12952, 52666, 213524, 863820, 3488872, 14073060, 56708264, 228318856, 918624304, 3693886906, 14846262964, 59644341436, 239532643144, 961665098956, 3859788636664, 15488087080696, 62135313450064
Offset: 0
- H. W. Gould, Combinatorial Identities, Morgantown, WV, 1972. p. 32.
- Hojoo Lee, Posting to Number Theory List, Feb 18 2002.
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- Vincenzo Librandi, Table of n, a(n) for n = 0..175
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Marko R. Riedel, Average depth of a leaf in a binary tree, Math.Stackexchange.com.
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36(4) (2006), 364-387.
-
[4^n - Binomial(2*n,n): n in [0..35]]; // Vincenzo Librandi, Jun 07 2011
-
A068551:=n->4^n - binomial(2*n,n): seq(A068551(n), n=0..30); # Wesley Ivan Hurt, Mar 22 2014
-
nn=20;c=(1-(1-4x)^(1/2))/(2x); D[CoefficientList[ Series[ 1/(1-2y x c), {x,0,nn}], x], y]/.y->1 (* Geoffrey Critzer, Jan 30 2012 *)
-
a(n)=if(n<0,0,4^n-binomial(2*n,n))
-
x='x+O('x^100); concat(0, Vec(1/(1-4*x)-1/sqrt(1-4*x))) \\ Altug Alkan, Dec 29 2015
A069724
Number of nonisomorphic unrooted unicursal planar maps with n edges (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
Original entry on oeis.org
1, 2, 9, 38, 214, 1253, 7925, 51620, 346307, 2365886, 16421359, 115384738, 819276830, 5868540399, 42357643916, 307753571520, 2249048959624, 16520782751969, 121915128678131, 903391034923548, 6719098772562182
Offset: 1
-
a[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(#-2) Binomial[2 #, #], 0]&] + If[OddQ[n], 2^((n-3)/2) Binomial[n-1, (n-1)/2], 2^((n-6)/2) Binomial[n, n/2]]; Array[a, 21] (* Jean-François Alcover, Sep 18 2016 *)
Showing 1-10 of 36 results.
Comments