cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A039707 Erroneous version of A005470.

Original entry on oeis.org

1, 2, 4, 11, 33, 142, 822, 6910
Offset: 1

Views

Author

Keywords

A173310 Partial sums of A005470.

Original entry on oeis.org

1, 2, 4, 8, 19, 52, 194, 1016, 7982, 87835, 1228751, 19909759, 353222210
Offset: 0

Views

Author

Jonathan Vos Post, Feb 16 2010

Keywords

Crossrefs

Cf. A005470.

Formula

a(n) = Sum_{i=0..n} A005470(i).

Extensions

a(12) from the data at A005470 added by Amiram Eldar, Jul 22 2025

A000168 a(n) = 2*3^n*(2*n)!/(n!*(n+2)!).

Original entry on oeis.org

1, 2, 9, 54, 378, 2916, 24057, 208494, 1876446, 17399772, 165297834, 1602117468, 15792300756, 157923007560, 1598970451545, 16365932856990, 169114639522230, 1762352559231660, 18504701871932430, 195621134074714260, 2080697516976506220, 22254416920705240440, 239234981897581334730, 2583737804493878415084
Offset: 0

Views

Author

Keywords

Comments

Number of rooted planar maps with n edges. - Don Knuth, Nov 24 2013
Number of rooted 4-regular planar maps with n vertices.
Also, number of doodles with n crossings, irrespective of the number of loops.
From Karol A. Penson, Sep 02 2010: (Start)
Integral representation as n-th moment of a positive function on the (0,12) segment of the x axis. This representation is unique as it is the solution of the Hausdorff moment problem.
a(n) = Integral_{x=0..12} ((x^n*(4/9)*(1 - x/12)^(3/2)) / (Pi*sqrt(x/3))). (End)
Also, the number of distinct underlying shapes of closed normal linear lambda terms of a given size, where the shape of a lambda term abstracts away from its variable binding. [N. Zeilberger, 2015] - N. J. A. Sloane, Sep 18 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
Number of well-labeled trees (Bona, 2015). - N. J. A. Sloane, Dec 25 2018

Examples

			G.f. = 1 + 2*x + 9*x^2 + 54*x^3 + 378*x^4 + 2916*x^5 + 24057*x^6 + 208494*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 319, 353.
  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
  • V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
  • V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
First row of array A101486.
Cf. A005470.
Rooted maps with n edges of genus g for 0 <= g <= 10: this sequence, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, A238359, A238360.

Programs

  • Magma
    [(2*Catalan(n)*3^n)/(n+2): n in [1..30]]; // Vincenzo Librandi, Sep 04 2014
  • Maple
    A000168:=n->2*3^n*(2*n)!/(n!*(n+2)!);
  • Mathematica
    Table[(2*3^n*(2n)!)/(n!(n+2)!),{n,0,20}] (* Harvey P. Dale, Jul 25 2011 *)
    a[ n_] := If[ n < 0, 0, 2 3^n (2 n)!/(n! (n + 2)!)] (* Michael Somos, Nov 25 2013 *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1, 3, 12 x], {x, 0, n}] (* Michael Somos, Nov 25 2013 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * 3^n * (2*n)! / (n! * (n+2)!))}; /* Michael Somos, Nov 25 2013 */
    

Formula

G.f. A(z) satisfies A(z) = 1 - 16*z + 18*z*A(z) - 27*z^2*A(z)^2.
G.f.: F(1/2,1;3;12x). - Paul Barry, Feb 04 2009
a(n) = 2*3^n*A000108(n)/(n+2). - Paul Barry, Feb 04 2009
D-finite with recurrence: (n + 1) a(n) = (12 n - 18) a(n - 1). - Simon Plouffe, Feb 09 2012
G.f.: 1/54*(-1+18*x+(-(12*x-1)^3)^(1/2))/x^2. - Simon Plouffe, Feb 09 2012
0 = a(n)*(+144*a(n+1) - 42*a(n+2)) + a(n+1)*(+18*a(n+1) + a(n+2)) if n>=0. - Michael Somos, Jan 31 2014
a(n) ~ 2*(12^n)/((n^2+3*n)*sqrt(Pi*n)). - Peter Luschny, Nov 25 2015
E.g.f.: exp(6*x)*(12*x*BesselI(0,6*x) - (1 + 12*x)*BesselI(1,6*x))/(9*x). - Ilya Gutkovskiy, Feb 01 2017
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 1887/1331 + 3240*arccosec(2*sqrt(3))/(1331*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 1563/2197 - 3240*arccosech(2*sqrt(3))/(2197*sqrt(13)). (End)

Extensions

More terms from Joerg Arndt, Feb 26 2014

A000944 Number of polyhedra (or 3-connected simple planar graphs) with n nodes.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 34, 257, 2606, 32300, 440564, 6384634, 96262938, 1496225352, 23833988129, 387591510244, 6415851530241, 107854282197058
Offset: 1

Views

Author

Keywords

References

  • H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, B15.
  • M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
  • B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
  • Y. Y. Prokhorov, ed., Mnogogrannik [Polyhedron], Mathematical Encyclopedia Dictionary, Soviet Encyclopedia, 1988.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. M. Ziegler, Questions about polytopes, pp. 1195-1211 of Mathematics Unlimited - 2001 and Beyond, ed. B. Engquist and W. Schmid, Springer-Verlag, 2001.

Crossrefs

Extensions

More terms from Brendan McKay
a(18) from Brendan McKay, Jun 02 2006

A003094 Number of unlabeled connected planar simple graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 6, 20, 99, 646, 5974, 71885, 1052805, 17449299, 313372298, 5942258308
Offset: 0

Views

Author

Keywords

Comments

Inverse Euler transform of A005470. - Christian G. Bower, May 16 2003

Examples

			a(3) = 2 since the path o-o-o and the triangle are the two connected planar simple graphs on three nodes.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. J. Wilson, Introduction to Graph Theory, Academic Press, NY, 1972, p. 162.

Crossrefs

Row sums of A049334.
The labeled version is A096332.

Programs

  • Mathematica
    a[n_Integer?NonNegative] := a[n] = Module[{m, s, g}, s = Subsets[Range[n], {2}]; m = Length[s]; g = Graph[Range[n], UndirectedEdge @@@ #] & /@ (Pick[s, #, 1] & /@ (IntegerDigits[#, 2, m] & /@ Range[0, 2^m - 1])); Length[DeleteDuplicates[Select[Select[g, ConnectedGraphQ], PlanarGraphQ], IsomorphicGraphQ]]]; Table[a[n], {n, 0, 6}] (* Robert P. P. McKone, Oct 14 2023 *)
  • nauty
    geng -c $n | planarg -q | countg -q # Georg Grasegger, Jul 06 2023

Extensions

More terms from Brendan McKay
a(12) added by Brendan McKay, Dec 06 2014
a(13) added by Georg Grasegger, Jul 06 2023

A007146 Number of unlabeled simple connected bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1

Views

Author

Keywords

Comments

Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - Gus Wiseman, Sep 02 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005470 (number of simple graphs).
Cf. A007145 (number of simple connected rooted bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
The labeled version is A095983.
Row sums of A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.

Programs

  • PARI
    \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) = A001349(n) - A052446(n). - Gus Wiseman, Sep 02 2019

Extensions

Reference gives first 22 terms.

A021103 Number of two-connected (or biconnected) planar graphs with n nodes.

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 44, 294, 2893, 36496, 545808, 9029737, 159563559, 2952794985, 56589742050
Offset: 0

Views

Author

Keywords

Comments

For n < 3, conventions vary: Read & Wilson set a(2) = 0, but Gagarin et al. set a(2) = 1. - Andrey Zabolotskiy, Jun 07 2023

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. See p. 229.

Crossrefs

Row sums of A049336.
The labeled version is A096331.
Cf. A000944 (3-connected), A002218, A003094, A005470.

Extensions

a(12)-a(14) from Gilbert Labelle (labelle.gilbert(AT)uqam.ca), Jan 20 2009
Offset 0 from Michel Marcus, Jun 05 2023
a(2) changed back to 0 by Georg Grasegger and Andrey Zabolotskiy, Jun 07 2023

A066537 Number of planar graphs on n labeled nodes.

Original entry on oeis.org

1, 1, 2, 8, 64, 1023, 32071, 1823707, 163947848, 20402420291, 3209997749284, 604611323732576, 131861300077834966, 32577569614176693919, 8977083127683999891824, 2726955513946123452637877, 904755724004585279250537376, 325403988657293080813790670641
Offset: 0

Views

Author

Aart Blokhuis (aartb(AT)win.tue.nl), Jan 08 2002

Keywords

Comments

Precise numbers derived from numbers of 3-connected, 2-connected and 1-connected planar labeled graphs. Details and more entries in Bodirsky et al. Some bounds on the asymptotics are known, see e.g. Taraz et al.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419.

Crossrefs

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    A096331_seq(N) = Vec(subst(A100960_ser(N+2),'t,1));
    A096332_seq(N) = {
      my(x='x+O('x^(N+3)), b=x^2/2+serconvol(Ser(A096331_seq(N))*x^3, exp(x)));
      Vec(serlaplace(intformal(serreverse(x/exp(b'))/x)));
    };
    A066537_seq(N) = {
      my(x='x+O('x^(N+3)));
      Vec(serlaplace(exp(serconvol(Ser(A096332_seq(N))*'x,exp(x)))));
    };
    A066537_seq(15) \\ Gheorghe Coserea, Aug 10 2017

Formula

Recurrence known, see Bodirsky et al.
a(n) ~ g * n^(-7/2) * gamma^n * n!, where g=0.000004260938569161439...(A266391) and gamma=27.2268777685...(A266390) (see Gimenez and Noy).

Extensions

More terms from Manuel Bodirsky (bodirsky(AT)informatik.hu-berlin.de), Sep 15 2003
Entry revised by N. J. A. Sloane, Jun 17 2006

A068551 a(n) = 4^n - binomial(2*n,n).

Original entry on oeis.org

0, 2, 10, 44, 186, 772, 3172, 12952, 52666, 213524, 863820, 3488872, 14073060, 56708264, 228318856, 918624304, 3693886906, 14846262964, 59644341436, 239532643144, 961665098956, 3859788636664, 15488087080696, 62135313450064
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2002

Keywords

Comments

Number of rooted two-face n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005
Total number of returns to the x axis in all lattice paths using steps (1,1) and (1,-1) from the origin to (2n,0). Cf. A108747. - Geoffrey Critzer, Jan 30 2012
Total depth of all leaves in all binary trees on 2n+1 nodes. - Marko Riedel, Sep 10 2016

References

  • H. W. Gould, Combinatorial Identities, Morgantown, WV, 1972. p. 32.
  • Hojoo Lee, Posting to Number Theory List, Feb 18 2002.
  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Magma
    [4^n - Binomial(2*n,n): n in [0..35]]; // Vincenzo Librandi, Jun 07 2011
    
  • Maple
    A068551:=n->4^n - binomial(2*n,n): seq(A068551(n), n=0..30); # Wesley Ivan Hurt, Mar 22 2014
  • Mathematica
    nn=20;c=(1-(1-4x)^(1/2))/(2x); D[CoefficientList[ Series[ 1/(1-2y x c), {x,0,nn}], x], y]/.y->1 (* Geoffrey Critzer, Jan 30 2012 *)
  • PARI
    a(n)=if(n<0,0,4^n-binomial(2*n,n))
    
  • PARI
    x='x+O('x^100); concat(0, Vec(1/(1-4*x)-1/sqrt(1-4*x))) \\ Altug Alkan, Dec 29 2015

Formula

G.f.: 1/(1 - 4*x) - 1/sqrt(1 - 4*x) = C(x)*2*x/(1 - 4*x) where C(x) = g.f. for Catalan numbers A000108.
a(n) = Sum_{k >= 1} binomial(2*m-2*k, m-k) * binomial(2*k, k).
a(n+1) = 4*a(n) + 2*C(n), where C(n) = Catalan numbers.
a(n) = 2*A000346(n-1) for n > 0.
a(n) = A045621(2*n).
Conjecture: n*a(n) + 2*(3-4*n)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Apr 01 2012
Recurrence (an alternative): n*a(n) = 2^9*(2*n - 9)*a(n-5) + 2^8*(18 - 5*n)*a(n-4) + 2^6*(10*n - 27)*a(n-3) + 2^5*(9 - 5*n)*a(n-2) + 2*(10*n - 9)*a(n-1), n >= 5. - Fung Lam, Mar 22 2014
Asymptotics: a(n) ~ 2^(2*n)*(1 - 1/sqrt(n*Pi)). - Fung Lam, Mar 22 2014
E.g.f.: (exp(2*x) - BesselI(0, 2*x))*exp(2*x). - Ilya Gutkovskiy, Sep 10 2016
a(n) = (-1)^(n+1)*binomial(-n, n + 1)*hypergeom([1, 2*n + 1], [n + 2], 1/2). - Peter Luschny, Nov 29 2023

A069724 Number of nonisomorphic unrooted unicursal planar maps with n edges (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

1, 2, 9, 38, 214, 1253, 7925, 51620, 346307, 2365886, 16421359, 115384738, 819276830, 5868540399, 42357643916, 307753571520, 2249048959624, 16520782751969, 121915128678131, 903391034923548, 6719098772562182
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(#-2) Binomial[2 #, #], 0]&] + If[OddQ[n], 2^((n-3)/2) Binomial[n-1, (n-1)/2], 2^((n-6)/2) Binomial[n, n/2]]; Array[a, 21] (* Jean-François Alcover, Sep 18 2016 *)

Formula

There is an easy formula.
a(n) ~ 8^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 28 2019
Showing 1-10 of 36 results. Next