A095983
Number of 2-edge-connected labeled graphs on n nodes.
Original entry on oeis.org
0, 0, 0, 1, 10, 253, 11968, 1047613, 169181040, 51017714393, 29180467201536, 32121680070545657, 68867078000231169536, 290155435185687263172693, 2417761175748567327193407488, 40013922635723692336670167608181, 1318910073755307133701940625759574016
Offset: 0
Yifei Chen (yifei(AT)mit.edu), Jul 17 2004
Row sums of
A327069 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are
A327109.
Graphs with spanning edge-connectivity 2 are
A327146.
Graphs with non-spanning edge-connectivity >= 2 are
A327200.
2-vertex-connected graphs are
A013922.
Graphs without endpoints are
A059167.
Graphs with spanning edge-connectivity 1 are
A327071.
-
seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[ Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k-1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
seq[16] (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]>=2&]],{n,0,5}] (* Gus Wiseman, Sep 20 2019 *)
-
\\ here p is initially A053549, q is A198046 as e.g.f.s.
seq(n)={my(v=vector(n));
my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))));
my(q=x*exp(p)); p-=q;
for(k=3, n, my(c=polcoeff(p,k)); v[k]=c*(k-1)!; p-=c*q^k);
concat([0],v)} \\ Andrew Howroyd, Jun 18 2018
-
seq(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))/x-1), -(n+1))} \\ Andrew Howroyd, Dec 28 2020
A327071
Number of labeled simple connected graphs with n vertices and at least one bridge, or graphs with spanning edge-connectivity 1.
Original entry on oeis.org
0, 0, 1, 3, 28, 475, 14736, 818643, 82367552, 15278576679, 5316021393280, 3519977478407687, 4487518206535452672, 11116767463976825779115, 53887635281876408097483776, 513758302006787897939587736715, 9668884580476067306398361085853696
Offset: 0
Connected graphs without bridges are
A007146.
The enumeration of labeled connected graphs by number of bridges is
A327072.
Connected graphs with exactly one bridge are
A327073.
Graphs with non-spanning edge-connectivity 1 are
A327079.
BII-numbers of set-systems with spanning edge-connectivity 1 are
A327111.
Covering set-systems with spanning edge-connectivity 1 are
A327145.
Graphs with spanning edge-connectivity 2 are
A327146.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==1&]],{n,0,4}]
A052446
Number of unlabeled simple connected bridged graphs on n nodes.
Original entry on oeis.org
0, 1, 1, 3, 10, 52, 351, 3714, 63638, 1912203, 103882478, 10338614868, 1892863194064, 639799762452639, 400857034314325045, 467526363203064793081, 1019286659457016864347582, 4170114225096278323394128049, 32130213534058019378134295287305
Offset: 1
- Jean-François Alcover, Table of n, a(n) for n = 1..22
- Travis Hoppe and Anna Petrone, Encyclopedia of Finite Graphs
- T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
- T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, Discr. Appl. Math. 201 (2016) 172-181
- Eric Weisstein's World of Mathematics, k-Edge-Connected Graph
- Eric Weisstein's World of Mathematics, Bridged Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Gus Wiseman, The a(2) = 1 through a(5) = 10 connected bridged graphs
Cf.
A001349 (number of simple connected graphs).
Cf.
A007146 (number of simple connected bridgeless graphs).
Cf.
A263914 (number of simple bridgeless graphs).
Cf.
A263915 (number of simple bridged graphs).
Row sums of
A327077 if the first column is removed.
BII-numbers of set-systems with spanning edge-connectivity 1 are
A327111.
-
A001349 = Cases[Import["https://oeis.org/A001349/b001349.txt", "Table"], {, }][[All, 2]];
A007146 = Cases[Import["https://oeis.org/A007146/b007146.txt", "Table"], {, }][[All, 2]] ;
a[n_] := A001349[[n + 1]] - A007146[[n]];
Array[a, 22] (* Jean-François Alcover, Nov 09 2019 *)
A263296
Triangle read by rows: T(n,k) is the number of graphs with n vertices with edge connectivity k.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 10, 8, 2, 1, 44, 52, 41, 15, 3, 1, 191, 351, 352, 121, 25, 3, 1, 1229, 3714, 4820, 2159, 378, 41, 4, 1, 13588, 63638, 113256, 68715, 14306, 1095, 65, 4, 1, 288597, 1912203, 4602039, 3952378, 1141575, 104829, 3441, 100, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 3, 2, 1;
13, 10, 8, 2, 1;
44, 52, 41, 15, 3, 1;
191, 351, 352, 121, 25, 3, 1;
1229, 3714, 4820, 2159, 378, 41, 4, 1;
...
Columns k=0..10 are
A000719,
A052446,
A052447,
A052448,
A241703,
A241704,
A241705,
A324096,
A324097,
A324098,
A324099.
Cf.
A002494,
A095983,
A259862,
A327076,
A327108,
A327109,
A327111,
A327144,
A327145,
A327147,
A327236.
A322395
Number of labeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.
Original entry on oeis.org
1, 1, 1, 4, 26, 548, 22504, 1708336, 241874928, 65285161232, 34305887955616, 35573982726480064, 73308270568902715136, 301210456065963448091072, 2471487759846321319412778624, 40526856087731237340916330352896, 1328570640536613080046570271722309632
Offset: 0
-
nmax = 16;
seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n + 1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k - 1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
A095983 = seq[nmax];
a[n_] := If[n<3, 1, n+Sum[Binomial[n, k]*A095983[[k+1]]*k^(n-k), {k, 1, n}]];
a /@ Range[0, nmax] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
A059166
Number of n-node connected labeled graphs without endpoints.
Original entry on oeis.org
1, 1, 0, 1, 10, 253, 12058, 1052443, 169488200, 51045018089, 29184193354806, 32122530765469967, 68867427921051098084, 290155706369032525823085, 2417761578629525173499004146, 40013923790443379076988789688611, 1318910080173114018084245406769861936
Offset: 0
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 404.
Cf.
A059167 (n-node labeled graphs without endpoints),
A004108 (n-node connected unlabeled graphs without endpoints),
A004110 (n-node unlabeled graphs without endpoints).
-
c:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*c(k), k=1..n-1)/n)
end:
a:= n-> max(0, add((-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, i=0..n)):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 27 2017
-
Flatten[{1,1,0,Table[n!*Sum[(-1)^(n-j)*SeriesCoefficient[1+Log[Sum[2^(k*(k-1)/2)*x^k/k!,{k,0,j}]],{x,0,j}]*j^(n-j)/(n-j)!,{j,0,n}],{n,3,15}]}] (* Vaclav Kotesovec, May 14 2015 *)
c[0] = 1; c[n_] := c[n] = 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k)*(n - k - 1)/2)*c[k], {k, 1, n-1}]/n; a[0] = a[1] = 1; a[2] = 0; a[n_] := Sum[(-1)^i*Binomial[n, i]*c[n-i]*(n-i)^i, {i, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, using Alois P. Heinz's code for c(n) *)
-
seq(n)={Vec(serlaplace(1 + x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))))} \\ Andrew Howroyd, Sep 09 2018
More terms from John Renze (jrenze(AT)yahoo.com), Feb 01 2001
A261919
Number of n-node unlabeled graphs without isolated nodes or endpoints (i.e., no nodes of degree 0 or 1).
Original entry on oeis.org
1, 0, 0, 1, 3, 11, 62, 510, 7459, 197867, 9808968, 902893994, 153723380584, 48443158427276, 28363698856991892, 30996526139142442460, 63502034434187094606966, 244852545450108200518282934, 1783161611521019613186341526720, 24603891216946828886755056314074748
Offset: 0
From _Gus Wiseman_, Aug 15 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 graphs (empty columns not shown):
{} {12,13,23} {12,13,24,34} {12,13,24,35,45}
{13,14,23,24,34} {12,14,25,34,35,45}
{12,13,14,23,24,34} {12,15,25,34,35,45}
{13,14,23,24,35,45}
{12,13,24,25,34,35,45}
{13,15,24,25,34,35,45}
{14,15,24,25,34,35,45}
{12,13,15,24,25,34,35,45}
{14,15,23,24,25,34,35,45}
{13,14,15,23,24,25,34,35,45}
{12,13,14,15,23,24,25,34,35,45}
(End)
- F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
Cf.
A004108 (connected version),
A004110 (version allowing isolated nodes).
-
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1-x^p[[i]], {i, 1, Length[p]}], x, n-k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; b[0] = 1;
a[n_] := b[n] - b[n-1];
a /@ Range[0, 19] (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A004110 *)
A327097
BII-numbers of set-systems with non-spanning edge-connectivity 2.
Original entry on oeis.org
5, 6, 17, 20, 24, 34, 36, 40, 48, 53, 54, 55, 60, 61, 62, 63, 65, 66, 68, 71, 72, 80, 86, 87, 89, 92, 93, 94, 95, 96, 101, 103, 106, 108, 109, 110, 111, 113, 114, 115, 121, 122, 123, 257, 260, 272, 308, 309, 310, 311, 316, 317, 318, 319, 320, 326, 327, 342
Offset: 1
The sequence of all set-systems with non-spanning edge-connectivity 2 together with their BII-numbers begins:
5: {{1},{1,2}}
6: {{2},{1,2}}
17: {{1},{1,3}}
20: {{1,2},{1,3}}
24: {{3},{1,3}}
34: {{2},{2,3}}
36: {{1,2},{2,3}}
40: {{3},{2,3}}
48: {{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
71: {{1},{2},{1,2},{1,2,3}}
BII-numbers for vertex-connectivity 2 are
A327082.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for non-spanning edge-connectivity > 1 are
A327102.
BII-numbers for spanning edge-connectivity 2 are
A327108.
Cf.
A007146,
A048793,
A052446,
A059166,
A070939,
A095983,
A263296,
A322335,
A322338,
A322395,
A326031,
A327041,
A327069,
A327111.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
Select[Range[0,100],edgeConn[bpe[#]]==2&]
A327077
Triangle read by rows where T(n,k) is the number of unlabeled simple connected graphs with n vertices and k bridges.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 0, 2, 0, 11, 4, 3, 0, 3, 0, 60, 25, 14, 7, 0, 6, 0, 502, 197, 91, 34, 18, 0, 11, 0, 7403, 2454, 826, 267, 100, 44, 0, 23, 0, 197442, 48201, 11383, 2800, 831, 259, 117, 0, 47, 0
Offset: 0
Triangle begins:
1
1 0
0 1 0
1 0 1 0
3 1 0 2 0
11 4 3 0 3 0
60 25 14 7 0 6 0
502 197 91 34 18 0 11 0
7403 2454 826 267 100 44 0 23 0
...
Row sums without the k = 0 column are
A052446.
A327073
Number of labeled simple connected graphs with n vertices and exactly one bridge.
Original entry on oeis.org
0, 0, 1, 0, 12, 200, 7680, 506856, 58934848, 12205506096, 4595039095680, 3210660115278000, 4240401342141499392, 10743530775519296581944, 52808688280248604235191296, 507730995579614277599205009240, 9603347831901155679455061048606720, 358743609478638769812094362544644831968
Offset: 0
Connected graphs with no bridges are
A007146.
Connected graphs whose bridges are all leaves are
A322395.
Connected graphs with at least one bridge are
A327071.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==1&]],{n,0,5}]
-
\\ See A095983.
seq(n)={my(p=x*deriv(log(sum(k=0, n-1, 2^binomial(k, 2) * x^k / k!) + O(x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))^2/2), -(n+1)) } \\ Andrew Howroyd, Dec 28 2020
Showing 1-10 of 28 results.
Comments