cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A259862 Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 11, 7, 2, 1, 44, 56, 39, 13, 3, 1, 191, 385, 332, 111, 21, 3, 1, 1229, 3994, 4735, 2004, 345, 34, 4, 1, 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1, 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1, 12297299, 105731474, 327695586, 388624106, 162318088, 21500415, 820956, 9813, 121, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2015

Keywords

Comments

These are vertex-connectivities. Spanning edge-connectivity is A263296. Non-spanning edge-connectivity is A327236. Cut-connectivity is A327127. - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
       1;
       1,       1;
       2,       1,       1;
       5,       3,       2,       1;
      13,      11,       7,       2,       1;
      44,      56,      39,      13,       3,     1;
     191,     385,     332,     111,      21,     3,    1;
    1229,    3994,    4735,    2004,     345,    34,    4,  1;
   13588,   67014,  113176,   66410,   13429,   992,   54,  4, 1;
  288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1;
  12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1;
  ...
		

Crossrefs

Columns k=0..10 (up to initial nonzero terms) are A000719, A052442, A052443, A052444, A052445, A324234, A324235, A324088, A324089, A324090, A324091.
Row sums are A000088.
Number of graphs with connectivity at least k for k=1..10 are A001349, A002218, A006290, A086216, A086217, A324240, A324092, A324093, A324094, A324095.
The labeled version is A327334.

A007146 Number of unlabeled simple connected bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1

Views

Author

Keywords

Comments

Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - Gus Wiseman, Sep 02 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005470 (number of simple graphs).
Cf. A007145 (number of simple connected rooted bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
The labeled version is A095983.
Row sums of A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.

Programs

  • PARI
    \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) = A001349(n) - A052446(n). - Gus Wiseman, Sep 02 2019

Extensions

Reference gives first 22 terms.

A052446 Number of unlabeled simple connected bridged graphs on n nodes.

Original entry on oeis.org

0, 1, 1, 3, 10, 52, 351, 3714, 63638, 1912203, 103882478, 10338614868, 1892863194064, 639799762452639, 400857034314325045, 467526363203064793081, 1019286659457016864347582, 4170114225096278323394128049, 32130213534058019378134295287305
Offset: 1

Views

Author

Eric W. Weisstein, May 08 2000

Keywords

Comments

These are unlabeled connected graphs with spanning edge-connectivity 1, where the spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph. - Gus Wiseman, Sep 02 2019

Crossrefs

Cf. other k-edge-connected unlabeled graph sequences A052446, A052447, A052448, A241703, A241704, A241705.
Cf. A001349 (number of simple connected graphs).
Cf. A007146 (number of simple connected bridgeless graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
Column k = 1 of A263296.
Row sums of A327077 if the first column is removed.
BII-numbers of set-systems with spanning edge-connectivity 1 are A327111.
The labeled version is A327071.

Programs

Formula

a(n) = A001349(n) - A007146(n).

Extensions

a(8) and a(9) and better description by Eric W. Weisstein, Nov 07 2010
a(10) from the Encyclopedia of Finite Graphs by Travis Hoppe and Anna Petrone, Apr 22 2014
Additional terms from A001349 and A007146 by Eric W. Weisstein, Oct 29 2015
a(18)-a(22) from A001349 and A007146 by Jean-François Alcover, Nov 09 2019

A327069 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 475, 227, 25, 1, 0, 6064, 14736, 10110, 1782, 75, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph.
We consider a graph with one vertex and no edges to be disconnected.

Examples

			Triangle begins:
    1
    1   0
    1   1   0
    4   3   1   0
   26  28   9   1   0
  296 475 227  25   1   0
		

Crossrefs

Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(1) = 1.
Column k = 1 is A327071.
Column k = 2 is A327146.
The unlabeled version (except with offset 1) is A263296.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==k&]],{n,0,5},{k,0,n}]

Extensions

a(21)-a(27) from Robert Price, May 25 2021

A052447 Number of simple unlabeled n-node graphs of edge-connectivity 2.

Original entry on oeis.org

0, 0, 1, 2, 8, 41, 352, 4820, 113256, 4602039, 325754696, 40348545658
Offset: 1

Views

Author

Eric W. Weisstein, May 08 2000

Keywords

Crossrefs

Column k=2 of A263296.
Cf. other unlabeled edge-connectivity graph sequences A052446, A052448, A241703, A241704, A241705.

Extensions

a(8)-a(10) from the Encyclopedia of Finite Graphs by Travis Hoppe and Anna Petrone, Apr 22 2014
a(11) by Jens M. Schmidt, Feb 18 2019
a(12) from Jens M. Schmidt's web page, Jan 10 2021

A327148 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of labeled simple graphs with n vertices and non-spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 4, 18, 27, 14, 1, 56, 250, 402, 240, 65, 10, 1, 1031, 5475, 11277, 9620, 4282, 921, 146, 15, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed (along with any isolated vertices) to obtain a disconnected or empty graph.

Examples

			Triangle begins:
   1
   1
   1   1
   1   3   3   1
   4  18  27  14   1
  56 250 402 240  65  10   1
		

Crossrefs

Row sums are A006125.
Column k = 0 is A327199.
Column k = 1 is A327231.
The corresponding triangle for vertex-connectivity is A327125.
The corresponding triangle for spanning edge-connectivity is A327069.
The covering version is A327149.
The unlabeled version is A327236, with covering version A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}

Formula

T(n,k) = Sum_{m = 0..n} binomial(n,m) A327149(m,k). In words, column k is the binomial transform of column k of A327149.

Extensions

a(20)-a(28) from Robert Price, May 25 2021

A327097 BII-numbers of set-systems with non-spanning edge-connectivity 2.

Original entry on oeis.org

5, 6, 17, 20, 24, 34, 36, 40, 48, 53, 54, 55, 60, 61, 62, 63, 65, 66, 68, 71, 72, 80, 86, 87, 89, 92, 93, 94, 95, 96, 101, 103, 106, 108, 109, 110, 111, 113, 114, 115, 121, 122, 123, 257, 260, 272, 308, 309, 310, 311, 316, 317, 318, 319, 320, 326, 327, 342
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any isolated vertices) to result in a disconnected or empty set-system.

Examples

			The sequence of all set-systems with non-spanning edge-connectivity 2 together with their BII-numbers begins:
   5: {{1},{1,2}}
   6: {{2},{1,2}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  24: {{3},{1,3}}
  34: {{2},{2,3}}
  36: {{1,2},{2,3}}
  40: {{3},{2,3}}
  48: {{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
  71: {{1},{2},{1,2},{1,2,3}}
		

Crossrefs

Positions of 2's in A326787.
BII-numbers for vertex-connectivity 2 are A327082.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for non-spanning edge-connectivity > 1 are A327102.
BII-numbers for spanning edge-connectivity 2 are A327108.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
    Select[Range[0,100],edgeConn[bpe[#]]==2&]

A327102 BII-numbers of set-systems with non-spanning edge-connectivity >= 2.

Original entry on oeis.org

5, 6, 17, 20, 21, 24, 34, 36, 38, 40, 48, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system has non-spanning 2-edge-connectivity >= 2 if it is connected and any single edge can be removed (along with any non-covered vertices) without making the set-system disconnected or empty. Alternatively, these are connected set-systems whose bridges (edges whose removal disconnects the set-system or leaves isolated vertices) are all endpoints (edges intersecting only one other edge).

Examples

			The sequence of all set-systems with non-spanning edge-connectivity >= 2 together with their BII-numbers begins:
   5: {{1},{1,2}}
   6: {{2},{1,2}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  24: {{3},{1,3}}
  34: {{2},{2,3}}
  36: {{1,2},{2,3}}
  38: {{2},{1,2},{2,3}}
  40: {{3},{2,3}}
  48: {{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  56: {{3},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
		

Crossrefs

Graphs with spanning edge-connectivity >= 2 are counted by A095983.
Graphs with non-spanning edge-connectivity >= 2 are counted by A322395.
Also positions of terms >=2 in A326787.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for spanning edge-connectivity >= 2 are A327109.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
    Select[Range[0,100],edgeConn[bpe[#]]>=2&]

A327236 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 4, 5, 10, 8, 5, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 03 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a disconnected or empty graph, ignoring isolated vertices.

Examples

			Triangle begins:
  1
  1
  1  1
  1  1  1  1
  2  2  3  3  1
  4  5 10  8  5  1  1
		

Crossrefs

Row sums are A000088.
Column k = 0 is A327235.
The labeled version is A327148.
The covering version is A327201.
Spanning edge-connectivity is A263296.
Vertex-connectivity is A259862.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}

A327129 Number of connected set-systems covering n vertices with at least one edge whose removal (along with any non-covered vertices) disconnects the set-system (non-spanning edge-connectivity 1).

Original entry on oeis.org

0, 1, 2, 35, 2804
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			The a(3) = 35 set-systems:
  {123}  {1}{12}{23}   {1}{2}{12}{13}   {1}{2}{3}{12}{13}
         {1}{13}{23}   {1}{2}{12}{23}   {1}{2}{3}{12}{23}
         {1}{2}{123}   {1}{2}{13}{23}   {1}{2}{3}{13}{23}
         {1}{3}{123}   {1}{2}{3}{123}   {1}{2}{3}{12}{123}
         {2}{12}{13}   {1}{3}{12}{13}   {1}{2}{3}{13}{123}
         {2}{13}{23}   {1}{3}{12}{23}   {1}{2}{3}{23}{123}
         {2}{3}{123}   {1}{3}{13}{23}
         {3}{12}{13}   {2}{3}{12}{13}
         {3}{12}{23}   {2}{3}{12}{23}
         {1}{23}{123}  {2}{3}{13}{23}
         {2}{13}{123}  {1}{2}{13}{123}
         {3}{12}{123}  {1}{2}{23}{123}
                       {1}{3}{12}{123}
                       {1}{3}{23}{123}
                       {2}{3}{12}{123}
                       {2}{3}{13}{123}
		

Crossrefs

The restriction to simple graphs is A327079, with non-covering version A327231.
The version for spanning edge-connectivity is A327145, with BII-numbers A327111.
The BII-numbers of these set-systems are A327099.
The non-covering version is A327196.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,3}]

Formula

Inverse binomial transform of A327196.
Showing 1-10 of 22 results. Next