A259862
Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n-1).
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 11, 7, 2, 1, 44, 56, 39, 13, 3, 1, 191, 385, 332, 111, 21, 3, 1, 1229, 3994, 4735, 2004, 345, 34, 4, 1, 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1, 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1, 12297299, 105731474, 327695586, 388624106, 162318088, 21500415, 820956, 9813, 121, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 3, 2, 1;
13, 11, 7, 2, 1;
44, 56, 39, 13, 3, 1;
191, 385, 332, 111, 21, 3, 1;
1229, 3994, 4735, 2004, 345, 34, 4, 1;
13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1;
288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1;
12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1;
...
Columns k=0..10 (up to initial nonzero terms) are
A000719,
A052442,
A052443,
A052444,
A052445,
A324234,
A324235,
A324088,
A324089,
A324090,
A324091.
A007146
Number of unlabeled simple connected bridgeless graphs with n nodes.
Original entry on oeis.org
1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..40 (terms 1..22 from R. J. Mathar)
- P. Hanlon and R. W. Robinson, Counting bridgeless graphs, J. Combin. Theory, B 33 (1982), 276-305, Table III.
- Eric Weisstein's World of Mathematics, Bridgeless Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Simple Graph
- Gus Wiseman, The a(3) = 1 through a(5) = 11 connected bridgeless graphs.
Cf.
A005470 (number of simple graphs).
Cf.
A007145 (number of simple connected rooted bridgeless graphs).
Cf.
A052446 (number of simple connected bridged graphs).
Cf.
A263914 (number of simple bridgeless graphs).
Cf.
A263915 (number of simple bridged graphs).
Row sums of
A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are
A327109.
Graphs with non-spanning edge-connectivity >= 2 are
A327200.
2-vertex-connected graphs are
A013922.
Cf.
A000719,
A001349,
A002494,
A261919,
A327069,
A327071,
A327074,
A327075,
A327077,
A327109,
A327144,
A327146.
-
\\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020
Reference gives first 22 terms.
A052446
Number of unlabeled simple connected bridged graphs on n nodes.
Original entry on oeis.org
0, 1, 1, 3, 10, 52, 351, 3714, 63638, 1912203, 103882478, 10338614868, 1892863194064, 639799762452639, 400857034314325045, 467526363203064793081, 1019286659457016864347582, 4170114225096278323394128049, 32130213534058019378134295287305
Offset: 1
- Jean-François Alcover, Table of n, a(n) for n = 1..22
- Travis Hoppe and Anna Petrone, Encyclopedia of Finite Graphs
- T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
- T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, Discr. Appl. Math. 201 (2016) 172-181
- Eric Weisstein's World of Mathematics, k-Edge-Connected Graph
- Eric Weisstein's World of Mathematics, Bridged Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Gus Wiseman, The a(2) = 1 through a(5) = 10 connected bridged graphs
Cf.
A001349 (number of simple connected graphs).
Cf.
A007146 (number of simple connected bridgeless graphs).
Cf.
A263914 (number of simple bridgeless graphs).
Cf.
A263915 (number of simple bridged graphs).
Row sums of
A327077 if the first column is removed.
BII-numbers of set-systems with spanning edge-connectivity 1 are
A327111.
-
A001349 = Cases[Import["https://oeis.org/A001349/b001349.txt", "Table"], {, }][[All, 2]];
A007146 = Cases[Import["https://oeis.org/A007146/b007146.txt", "Table"], {, }][[All, 2]] ;
a[n_] := A001349[[n + 1]] - A007146[[n]];
Array[a, 22] (* Jean-François Alcover, Nov 09 2019 *)
A327069
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 475, 227, 25, 1, 0, 6064, 14736, 10110, 1782, 75, 1, 0
Offset: 0
Triangle begins:
1
1 0
1 1 0
4 3 1 0
26 28 9 1 0
296 475 227 25 1 0
The unlabeled version (except with offset 1) is
A263296.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==k&]],{n,0,5},{k,0,n}]
A052447
Number of simple unlabeled n-node graphs of edge-connectivity 2.
Original entry on oeis.org
0, 0, 1, 2, 8, 41, 352, 4820, 113256, 4602039, 325754696, 40348545658
Offset: 1
A327148
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of labeled simple graphs with n vertices and non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 3, 1, 4, 18, 27, 14, 1, 56, 250, 402, 240, 65, 10, 1, 1031, 5475, 11277, 9620, 4282, 921, 146, 15, 1
Offset: 0
Triangle begins:
1
1
1 1
1 3 3 1
4 18 27 14 1
56 250 402 240 65 10 1
The corresponding triangle for vertex-connectivity is
A327125.
The corresponding triangle for spanning edge-connectivity is
A327069.
Cf.
A001187,
A263296,
A322338,
A322395,
A326787,
A327079,
A327097,
A327099,
A327102,
A327126,
A327144,
A327196,
A327200,
A327201.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327097
BII-numbers of set-systems with non-spanning edge-connectivity 2.
Original entry on oeis.org
5, 6, 17, 20, 24, 34, 36, 40, 48, 53, 54, 55, 60, 61, 62, 63, 65, 66, 68, 71, 72, 80, 86, 87, 89, 92, 93, 94, 95, 96, 101, 103, 106, 108, 109, 110, 111, 113, 114, 115, 121, 122, 123, 257, 260, 272, 308, 309, 310, 311, 316, 317, 318, 319, 320, 326, 327, 342
Offset: 1
The sequence of all set-systems with non-spanning edge-connectivity 2 together with their BII-numbers begins:
5: {{1},{1,2}}
6: {{2},{1,2}}
17: {{1},{1,3}}
20: {{1,2},{1,3}}
24: {{3},{1,3}}
34: {{2},{2,3}}
36: {{1,2},{2,3}}
40: {{3},{2,3}}
48: {{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
71: {{1},{2},{1,2},{1,2,3}}
BII-numbers for vertex-connectivity 2 are
A327082.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for non-spanning edge-connectivity > 1 are
A327102.
BII-numbers for spanning edge-connectivity 2 are
A327108.
Cf.
A007146,
A048793,
A052446,
A059166,
A070939,
A095983,
A263296,
A322335,
A322338,
A322395,
A326031,
A327041,
A327069,
A327111.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
Select[Range[0,100],edgeConn[bpe[#]]==2&]
A327102
BII-numbers of set-systems with non-spanning edge-connectivity >= 2.
Original entry on oeis.org
5, 6, 17, 20, 21, 24, 34, 36, 38, 40, 48, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1
The sequence of all set-systems with non-spanning edge-connectivity >= 2 together with their BII-numbers begins:
5: {{1},{1,2}}
6: {{2},{1,2}}
17: {{1},{1,3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
24: {{3},{1,3}}
34: {{2},{2,3}}
36: {{1,2},{2,3}}
38: {{2},{1,2},{2,3}}
40: {{3},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
56: {{3},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
Graphs with spanning edge-connectivity >= 2 are counted by
A095983.
Graphs with non-spanning edge-connectivity >= 2 are counted by
A322395.
Also positions of terms >=2 in
A326787.
BII-numbers for non-spanning edge-connectivity 2 are
A327097.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for spanning edge-connectivity >= 2 are
A327109.
Cf.
A000120,
A048793,
A059166,
A070939,
A263296,
A326031,
A326749,
A327076,
A327101,
A327102,
A327108,
A327148.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
Select[Range[0,100],edgeConn[bpe[#]]>=2&]
A327236
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 4, 5, 10, 8, 5, 1, 1
Offset: 0
Triangle begins:
1
1
1 1
1 1 1 1
2 2 3 3 1
4 5 10 8 5 1 1
Spanning edge-connectivity is
A263296.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327129
Number of connected set-systems covering n vertices with at least one edge whose removal (along with any non-covered vertices) disconnects the set-system (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 1, 2, 35, 2804
Offset: 0
The a(3) = 35 set-systems:
{123} {1}{12}{23} {1}{2}{12}{13} {1}{2}{3}{12}{13}
{1}{13}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23}
{1}{2}{123} {1}{2}{13}{23} {1}{2}{3}{13}{23}
{1}{3}{123} {1}{2}{3}{123} {1}{2}{3}{12}{123}
{2}{12}{13} {1}{3}{12}{13} {1}{2}{3}{13}{123}
{2}{13}{23} {1}{3}{12}{23} {1}{2}{3}{23}{123}
{2}{3}{123} {1}{3}{13}{23}
{3}{12}{13} {2}{3}{12}{13}
{3}{12}{23} {2}{3}{12}{23}
{1}{23}{123} {2}{3}{13}{23}
{2}{13}{123} {1}{2}{13}{123}
{3}{12}{123} {1}{2}{23}{123}
{1}{3}{12}{123}
{1}{3}{23}{123}
{2}{3}{12}{123}
{2}{3}{13}{123}
The restriction to simple graphs is
A327079, with non-covering version
A327231.
The version for spanning edge-connectivity is
A327145, with BII-numbers
A327111.
The BII-numbers of these set-systems are
A327099.
The non-covering version is
A327196.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,3}]
Showing 1-10 of 22 results.
Comments