cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A259862 Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 11, 7, 2, 1, 44, 56, 39, 13, 3, 1, 191, 385, 332, 111, 21, 3, 1, 1229, 3994, 4735, 2004, 345, 34, 4, 1, 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1, 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1, 12297299, 105731474, 327695586, 388624106, 162318088, 21500415, 820956, 9813, 121, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2015

Keywords

Comments

These are vertex-connectivities. Spanning edge-connectivity is A263296. Non-spanning edge-connectivity is A327236. Cut-connectivity is A327127. - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
       1;
       1,       1;
       2,       1,       1;
       5,       3,       2,       1;
      13,      11,       7,       2,       1;
      44,      56,      39,      13,       3,     1;
     191,     385,     332,     111,      21,     3,    1;
    1229,    3994,    4735,    2004,     345,    34,    4,  1;
   13588,   67014,  113176,   66410,   13429,   992,   54,  4, 1;
  288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1;
  12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1;
  ...
		

Crossrefs

Columns k=0..10 (up to initial nonzero terms) are A000719, A052442, A052443, A052444, A052445, A324234, A324235, A324088, A324089, A324090, A324091.
Row sums are A000088.
Number of graphs with connectivity at least k for k=1..10 are A001349, A002218, A006290, A086216, A086217, A324240, A324092, A324093, A324094, A324095.
The labeled version is A327334.

A263296 Triangle read by rows: T(n,k) is the number of graphs with n vertices with edge connectivity k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 10, 8, 2, 1, 44, 52, 41, 15, 3, 1, 191, 351, 352, 121, 25, 3, 1, 1229, 3714, 4820, 2159, 378, 41, 4, 1, 13588, 63638, 113256, 68715, 14306, 1095, 65, 4, 1, 288597, 1912203, 4602039, 3952378, 1141575, 104829, 3441, 100, 5, 1
Offset: 1

Views

Author

Christian Stump, Oct 13 2015

Keywords

Comments

This is spanning edge-connectivity. The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. The non-spanning edge-connectivity of a graph (A327236) is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty. Compare to vertex-connectivity (A259862). - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
     1;
     1,    1;
     2,    1,    1;
     5,    3,    2,    1;
    13,   10,    8,    2,   1;
    44,   52,   41,   15,   3,  1;
   191,  351,  352,  121,  25,  3, 1;
  1229, 3714, 4820, 2159, 378, 41, 4, 1;
  ...
		

Crossrefs

Row sums give A000088, n >= 1.
Number of graphs with edge connectivity at least k for k=1..10 are A001349, A007146, A324226, A324227, A324228, A324229, A324230, A324231, A324232, A324233.
The labeled version is A327069.

Extensions

a(22)-a(55) added by Andrew Howroyd, Aug 11 2019

A327148 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of labeled simple graphs with n vertices and non-spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 4, 18, 27, 14, 1, 56, 250, 402, 240, 65, 10, 1, 1031, 5475, 11277, 9620, 4282, 921, 146, 15, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed (along with any isolated vertices) to obtain a disconnected or empty graph.

Examples

			Triangle begins:
   1
   1
   1   1
   1   3   3   1
   4  18  27  14   1
  56 250 402 240  65  10   1
		

Crossrefs

Row sums are A006125.
Column k = 0 is A327199.
Column k = 1 is A327231.
The corresponding triangle for vertex-connectivity is A327125.
The corresponding triangle for spanning edge-connectivity is A327069.
The covering version is A327149.
The unlabeled version is A327236, with covering version A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}

Formula

T(n,k) = Sum_{m = 0..n} binomial(n,m) A327149(m,k). In words, column k is the binomial transform of column k of A327149.

Extensions

a(20)-a(28) from Robert Price, May 25 2021

A327201 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs covering n vertices with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 3, 7, 5, 4, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 03 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a disconnected or empty graph, ignoring isolated vertices.

Examples

			Triangle begins:
  1
  {}
  0 1
  0 0 1 1
  1 1 2 2 1
  2 3 7 5 4 1 1
		

Crossrefs

Row sums are A002494.
Column k = 0 is A327075.
The labeled version is A327149.
Spanning edge-connectivity is A263296.
The non-covering version is A327236 (partial sums).

A327200 Number of labeled graphs with n vertices and non-spanning edge-connectivity >= 2.

Original entry on oeis.org

0, 0, 0, 4, 42, 718, 26262, 1878422, 256204460, 67525498676, 34969833809892, 35954978661632864, 73737437034063350534, 302166248212488958298674, 2475711390267267917290354410, 40563960064630744031043287569378, 1329219366981359393514586291328267704
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.

Crossrefs

Row sums of A327148 if the first two columns are removed.
BII-numbers of set-systems with non-spanning edge-connectivity >= 2 are A327102.
Graphs with non-spanning edge-connectivity 1 are A327231.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],eConn[#]>=2&]],{n,0,5}]

Formula

Binomial transform of A322395, if we assume A322395(0) = A322395(1) = A322395(2) = 0.

A327353 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 7, 3, 1, 53, 27, 45, 36, 6, 747, 511, 1497, 2085, 1540, 693, 316, 135, 45, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			Triangle begins:
    1
    1    1
    2    3
    8    7    3    1
   53   27   45   36    6
  747  511 1497 2085 1540  693  316  135   45   10    1
Row n = 3 counts the following antichains:
  {}             {{1}}      {{1,2},{1,3}}  {{1,2},{1,3},{2,3}}
  {{1},{2}}      {{2}}      {{1,2},{2,3}}
  {{1},{3}}      {{3}}      {{1,3},{2,3}}
  {{2},{3}}      {{1,2}}
  {{1},{2,3}}    {{1,3}}
  {{2},{1,3}}    {{2,3}}
  {{3},{1,2}}    {{1,2,3}}
  {{1},{2},{3}}
		

Crossrefs

Row sums are A014466.
Column k = 0 is A327354.
The covering case is A327357.
The version for spanning edge-connectivity is A327352.
The specialization to simple graphs is A327148, with covering case A327149, unlabeled version A327236, and unlabeled covering case A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}

A327354 Number of disconnected or empty antichains of nonempty subsets of {1..n} (non-spanning edge-connectivity 0).

Original entry on oeis.org

1, 1, 2, 8, 53, 747, 45156, 54804920, 19317457655317
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			The a(1) = 1 through a(3) = 8 antichains:
  {}  {}         {}
      {{1},{2}}  {{1},{2}}
                 {{1},{3}}
                 {{2},{3}}
                 {{1},{2,3}}
                 {{2},{1,3}}
                 {{3},{1,2}}
                 {{1},{2},{3}}
		

Crossrefs

Column k = 0 of A327353.
The covering case is A120338.
The unlabeled version is A327426.
The spanning edge-connectivity version is A327352.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Length[csm[#]]!=1&]],{n,0,4}]

Formula

Equals the binomial transform of the exponential transform of A048143 minus A048143.

A327199 Number of labeled simple graphs with n vertices whose edge-set is not connected.

Original entry on oeis.org

1, 1, 1, 1, 4, 56, 1031, 27189, 1165424, 89723096, 13371146135, 3989665389689, 2388718032951812, 2852540291841718752, 6768426738881535155247, 31870401029679493862010949, 297787425565749788134314214272
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Also graphs with non-spanning edge-connectivity 0.

Examples

			The a(4) = 4 edge-sets: {}, {12,34}, {13,24}, {14,23}.
		

Crossrefs

Column k = 0 of A327148.
The covering case is A327070.
The unlabeled version is A327235.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]!=1&]],{n,0,5}]

Formula

Binomial transform of A327070.

A327357 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of sets covering n vertices with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 0, 1, 1, 1, 4, 1, 3, 1, 30, 13, 33, 32, 6, 546, 421, 1302, 1915, 1510, 693, 316, 135, 45, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			Triangle begins:
    1
    0    1
    1    1
    4    1    3    1
   30   13   33   32    6
  546  421 1302 1915 1510  693  316  135   45   10    1
Row n = 3 counts the following antichains:
  {{1},{2,3}}    {{1,2,3}}  {{1,2},{1,3}}  {{1,2},{1,3},{2,3}}
  {{2},{1,3}}               {{1,2},{2,3}}
  {{3},{1,2}}               {{1,3},{2,3}}
  {{1},{2},{3}}
		

Crossrefs

Row sums are A307249.
Column k = 0 is A120338.
The non-covering version is A327353.
The version for spanning edge-connectivity is A327352.
The specialization to simple graphs is A327149, with unlabeled version A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,5},{k,0,2^n}]//.{foe___,0}:>{foe}

A327437 Number of unlabeled antichains of nonempty subsets of {1..n} that are either non-connected or non-covering (spanning edge-connectivity 0).

Original entry on oeis.org

1, 1, 3, 6, 15, 52, 410, 32697
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 antichains:
  {}  {}         {}             {}
      {{1}}      {{1}}          {{1}}
      {{1},{2}}  {{1,2}}        {{1,2}}
                 {{1},{2}}      {{1},{2}}
                 {{1},{2,3}}    {{1,2,3}}
                 {{1},{2},{3}}  {{1},{2,3}}
                                {{1,2},{1,3}}
                                {{1},{2},{3}}
                                {{1},{2,3,4}}
                                {{1,2},{3,4}}
                                {{1},{2},{3,4}}
                                {{1},{2},{3},{4}}
                                {{2},{1,3},{1,4}}
                                {{1,2},{1,3},{2,3}}
                                {{4},{1,2},{1,3},{2,3}}
		

Crossrefs

Column k = 0 of A327438.
The labeled version is A327355.
The covering case is A327426.

Formula

a(n > 0) = A306505(n) - A261006(n).
Showing 1-10 of 10 results.