A327148
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of labeled simple graphs with n vertices and non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 3, 1, 4, 18, 27, 14, 1, 56, 250, 402, 240, 65, 10, 1, 1031, 5475, 11277, 9620, 4282, 921, 146, 15, 1
Offset: 0
Triangle begins:
1
1
1 1
1 3 3 1
4 18 27 14 1
56 250 402 240 65 10 1
The corresponding triangle for vertex-connectivity is
A327125.
The corresponding triangle for spanning edge-connectivity is
A327069.
Cf.
A001187,
A263296,
A322338,
A322395,
A326787,
A327079,
A327097,
A327099,
A327102,
A327126,
A327144,
A327196,
A327200,
A327201.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327075
Number of non-connected unlabeled simple graphs covering n vertices.
Original entry on oeis.org
1, 0, 0, 0, 1, 2, 10, 35, 185, 1242, 13929, 292131, 12344252, 1032326141, 166163019475, 50671385831320, 29105332577409883, 31455744378606296280, 64032559078724993894492, 245999991257359808853560276, 1787823917424909126688749033668, 24639597815428343970034635549911427
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(6) = 10 graphs (empty columns not shown):
{} {12,34} {12,35,45} {12,34,56}
{12,34,35,45} {12,35,46,56}
{12,36,46,56}
{13,23,46,56}
{12,34,35,46,56}
{12,36,45,46,56}
{13,23,45,46,56}
{12,13,23,45,46,56}
{12,35,36,45,46,56}
{12,34,35,36,45,46,56}
-
from functools import lru_cache
from itertools import combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A327075(n):
if n <= 1: return 1-n
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
return b(n)-b(n-1)-sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 03 2024
A327236
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 4, 5, 10, 8, 5, 1, 1
Offset: 0
Triangle begins:
1
1
1 1
1 1 1 1
2 2 3 3 1
4 5 10 8 5 1 1
Spanning edge-connectivity is
A263296.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327149
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of simple labeled graphs covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 1, 3, 12, 15, 10, 1, 40, 180, 297, 180, 60, 10, 1
Offset: 0
Triangle begins:
1
{}
0 1
0 0 3 1
3 12 15 10 1
40 180 297 180 60 10 1
The corresponding triangle for vertex-connectivity is
A327126.
The corresponding triangle for spanning edge-connectivity is
A327069.
The non-covering version is
A327148.
Cf.
A001187,
A263296,
A322338,
A322395,
A326787,
A327097,
A327099,
A327102,
A327125,
A327129,
A327144.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327353
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 7, 3, 1, 53, 27, 45, 36, 6, 747, 511, 1497, 2085, 1540, 693, 316, 135, 45, 10, 1
Offset: 0
Triangle begins:
1
1 1
2 3
8 7 3 1
53 27 45 36 6
747 511 1497 2085 1540 693 316 135 45 10 1
Row n = 3 counts the following antichains:
{} {{1}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{1},{2}} {{2}} {{1,2},{2,3}}
{{1},{3}} {{3}} {{1,3},{2,3}}
{{2},{3}} {{1,2}}
{{1},{2,3}} {{1,3}}
{{2},{1,3}} {{2,3}}
{{3},{1,2}} {{1,2,3}}
{{1},{2},{3}}
The version for spanning edge-connectivity is
A327352.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
A327199
Number of labeled simple graphs with n vertices whose edge-set is not connected.
Original entry on oeis.org
1, 1, 1, 1, 4, 56, 1031, 27189, 1165424, 89723096, 13371146135, 3989665389689, 2388718032951812, 2852540291841718752, 6768426738881535155247, 31870401029679493862010949, 297787425565749788134314214272
Offset: 0
The a(4) = 4 edge-sets: {}, {12,34}, {13,24}, {14,23}.
Cf.
A001187,
A006129,
A322395,
A326787,
A327075,
A327076,
A327079,
A327129,
A327200,
A327201,
A327231,
A327236.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]!=1&]],{n,0,5}]
A327357
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of sets covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 1, 1, 4, 1, 3, 1, 30, 13, 33, 32, 6, 546, 421, 1302, 1915, 1510, 693, 316, 135, 45, 10, 1
Offset: 0
Triangle begins:
1
0 1
1 1
4 1 3 1
30 13 33 32 6
546 421 1302 1915 1510 693 316 135 45 10 1
Row n = 3 counts the following antichains:
{{1},{2,3}} {{1,2,3}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{2},{1,3}} {{1,2},{2,3}}
{{3},{1,2}} {{1,3},{2,3}}
{{1},{2},{3}}
The non-covering version is
A327353.
The version for spanning edge-connectivity is
A327352.
The specialization to simple graphs is
A327149, with unlabeled version
A327201.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,5},{k,0,2^n}]//.{foe___,0}:>{foe}
A327437
Number of unlabeled antichains of nonempty subsets of {1..n} that are either non-connected or non-covering (spanning edge-connectivity 0).
Original entry on oeis.org
1, 1, 3, 6, 15, 52, 410, 32697
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{1},{2}} {{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1},{2,3}} {{1,2,3}}
{{1},{2},{3}} {{1},{2,3}}
{{1,2},{1,3}}
{{1},{2},{3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3,4}}
{{1},{2},{3},{4}}
{{2},{1,3},{1,4}}
{{1,2},{1,3},{2,3}}
{{4},{1,2},{1,3},{2,3}}
Showing 1-8 of 8 results.
Comments