A327079
Number of labeled simple connected graphs covering n vertices with at least one bridge that is not an endpoint/leaf (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 0, 1, 0, 12, 180, 4200, 157920, 9673664, 1011129840, 190600639200, 67674822473280, 46325637863907072, 61746583700640860736, 161051184122415878112640, 824849999242893693424992000, 8317799170120961768715123118080
Offset: 0
The non-covering version is
A327231.
Connected bridged graphs (spanning edge-connectivity 1) are
A327071.
BII-numbers of graphs with non-spanning edge-connectivity 1 are
A327099.
Covering set-systems with non-spanning edge-connectivity 1 are
A327129.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,4}]
A327099
BII-numbers of set-systems with non-spanning edge-connectivity 1.
Original entry on oeis.org
1, 2, 4, 7, 8, 16, 22, 23, 25, 28, 29, 30, 31, 32, 37, 39, 42, 44, 45, 46, 47, 49, 50, 51, 57, 58, 59, 64, 67, 73, 74, 75, 76, 77, 78, 79, 82, 83, 90, 91, 97, 99, 105, 107, 128, 256, 262, 263, 278, 279, 280, 281, 284, 285, 286, 287, 292, 293, 294, 295, 300
Offset: 1
The sequence of all set-systems with non-spanning edge-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
4: {{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
16: {{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
25: {{1},{3},{1,3}}
28: {{1,2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
32: {{2,3}}
37: {{1},{1,2},{2,3}}
39: {{1},{2},{1,2},{2,3}}
42: {{2},{3},{2,3}}
44: {{1,2},{3},{2,3}}
45: {{1},{1,2},{3},{2,3}}
46: {{2},{1,2},{3},{2,3}}
Simple graphs with non-spanning edge-connectivity 1 are
A327071.
BII-numbers for non-spanning edge-connectivity >= 1 are
A326749.
BII-numbers for non-spanning edge-connectivity 2 are
A327097.
BII-numbers for spanning edge-connectivity 1 are
A327111.
BII-numbers for vertex-connectivity 1 are
A327114.
Covering set-systems with non-spanning edge-connectivity 1 are counted by
A327129.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
Select[Range[0,100],edgeConn[bpe[#]]==1&]
A327146
Number of labeled simple graphs with n vertices and spanning edge-connectivity 2.
Original entry on oeis.org
0, 0, 0, 1, 9, 227
Offset: 0
BII-numbers of set-systems with spanning edge-connectivity 2 are
A327108.
The generalization to set-systems is
A327130.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==2&]],{n,0,4}]
A327145
Number of connected set-systems with n vertices and at least one bridge (spanning edge-connectivity 1).
Original entry on oeis.org
0, 1, 4, 56, 4640
Offset: 0
The BII-numbers of these set-systems are
A327111.
Set systems with non-spanning edge-connectivity 1 are
A327196, with covering case
A327129.
Set systems with spanning edge-connectivity 2 are
A327130.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],spanEdgeConn[Range[n],#]==1&]],{n,0,3}]
A327201
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 3, 7, 5, 4, 1, 1
Offset: 0
Triangle begins:
1
{}
0 1
0 0 1 1
1 1 2 2 1
2 3 7 5 4 1 1
Spanning edge-connectivity is
A263296.
The non-covering version is
A327236 (partial sums).
Cf.
A000088,
A322338,
A322396,
A326787,
A327076,
A327077,
A327079,
A327126,
A327129,
A327148,
A327235.
A327149
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of simple labeled graphs covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 1, 3, 12, 15, 10, 1, 40, 180, 297, 180, 60, 10, 1
Offset: 0
Triangle begins:
1
{}
0 1
0 0 3 1
3 12 15 10 1
40 180 297 180 60 10 1
The corresponding triangle for vertex-connectivity is
A327126.
The corresponding triangle for spanning edge-connectivity is
A327069.
The non-covering version is
A327148.
Cf.
A001187,
A263296,
A322338,
A322395,
A326787,
A327097,
A327099,
A327102,
A327125,
A327129,
A327144.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327231
Number of labeled simple connected graphs covering a subset of {1..n} with at least one non-endpoint bridge (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 0, 1, 3, 18, 250, 5475, 191541, 11065572, 1104254964, 201167132805, 69828691941415, 47150542741904118, 62354150876493659118, 161919876753750972738791, 827272271567137357352991705, 8331016130913639432634637862600, 165634930763383717802534343776893928
Offset: 0
The a(2) = 1 through a(4) = 18 edge-sets:
{12} {12} {12}
{13} {13}
{23} {14}
{23}
{24}
{34}
{12,13,24}
{12,13,34}
{12,14,23}
{12,14,34}
{12,23,34}
{12,24,34}
{13,14,23}
{13,14,24}
{13,23,24}
{13,24,34}
{14,23,24}
{14,23,34}
Connected bridged graphs (spanning edge-connectivity 1) are
A327071.
BII-numbers of set-systems with non-spanning edge-connectivity 1 are
A327099.
Covering set-systems with non-spanning edge-connectivity 1 are
A327129.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==1&]],{n,0,4}]
A327199
Number of labeled simple graphs with n vertices whose edge-set is not connected.
Original entry on oeis.org
1, 1, 1, 1, 4, 56, 1031, 27189, 1165424, 89723096, 13371146135, 3989665389689, 2388718032951812, 2852540291841718752, 6768426738881535155247, 31870401029679493862010949, 297787425565749788134314214272
Offset: 0
The a(4) = 4 edge-sets: {}, {12,34}, {13,24}, {14,23}.
Cf.
A001187,
A006129,
A322395,
A326787,
A327075,
A327076,
A327079,
A327129,
A327200,
A327201,
A327231,
A327236.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]!=1&]],{n,0,5}]
A327196
Number of connected set-systems with n vertices and at least one bridge that is not an endpoint (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 1, 4, 44, 2960
Offset: 0
Non-isomorphic representatives of the a(3) = 44 set-systems:
{{1}}
{{1,2}}
{{1,2,3}}
{{1},{2},{1,2}}
{{1},{1,2},{2,3}}
{{1},{2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3}}
{{1},{2},{3},{1,2},{1,2,3}}
The BII-numbers of these set-systems are
A327099.
The restriction to simple graphs is
A327231.
Set-systems with spanning edge-connectivity 1 are
A327145.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],eConn[#]==1&]],{n,0,3}]
Showing 1-9 of 9 results.
Comments