A327071
Number of labeled simple connected graphs with n vertices and at least one bridge, or graphs with spanning edge-connectivity 1.
Original entry on oeis.org
0, 0, 1, 3, 28, 475, 14736, 818643, 82367552, 15278576679, 5316021393280, 3519977478407687, 4487518206535452672, 11116767463976825779115, 53887635281876408097483776, 513758302006787897939587736715, 9668884580476067306398361085853696
Offset: 0
Connected graphs without bridges are
A007146.
The enumeration of labeled connected graphs by number of bridges is
A327072.
Connected graphs with exactly one bridge are
A327073.
Graphs with non-spanning edge-connectivity 1 are
A327079.
BII-numbers of set-systems with spanning edge-connectivity 1 are
A327111.
Covering set-systems with spanning edge-connectivity 1 are
A327145.
Graphs with spanning edge-connectivity 2 are
A327146.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==1&]],{n,0,4}]
A327111
BII-numbers of set-systems with spanning edge-connectivity 1.
Original entry on oeis.org
1, 2, 4, 5, 6, 7, 8, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 88, 89, 90, 91, 96, 97, 98, 99
Offset: 1
The sequence of all set-systems with spanning edge-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
28: {{1,2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
32: {{2,3}}
Graphs with spanning edge-connectivity >= 2 are counted by
A095983.
BII-numbers for vertex-connectivity 1 are
A327098.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for spanning edge-connectivity 2 are
A327108.
BII-numbers for spanning edge-connectivity >= 2 are
A327109.
Set-systems with spanning edge-connectivity 2 are counted by
A327130.
Graphs with spanning edge-connectivity 1 are counted by
A327145.
Graphs with spanning edge-connectivity 2 are counted by
A327146.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Select[Range[0,100],spanEdgeConn[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]
A327148
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of labeled simple graphs with n vertices and non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 3, 1, 4, 18, 27, 14, 1, 56, 250, 402, 240, 65, 10, 1, 1031, 5475, 11277, 9620, 4282, 921, 146, 15, 1
Offset: 0
Triangle begins:
1
1
1 1
1 3 3 1
4 18 27 14 1
56 250 402 240 65 10 1
The corresponding triangle for vertex-connectivity is
A327125.
The corresponding triangle for spanning edge-connectivity is
A327069.
Cf.
A001187,
A263296,
A322338,
A322395,
A326787,
A327079,
A327097,
A327099,
A327102,
A327126,
A327144,
A327196,
A327200,
A327201.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327098
BII-numbers of set-systems with cut-connectivity 1.
Original entry on oeis.org
1, 2, 8, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 128, 260, 261, 262, 263, 272, 273, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 292, 293, 294, 295, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309
Offset: 1
The sequence of all set-systems with cut-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
8: {{3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
28: {{1,2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
36: {{1,2},{2,3}}
37: {{1},{1,2},{2,3}}
38: {{2},{1,2},{2,3}}
39: {{1},{2},{1,2},{2,3}}
44: {{1,2},{3},{2,3}}
45: {{1},{1,2},{3},{2,3}}
46: {{2},{1,2},{3},{2,3}}
47: {{1},{2},{1,2},{3},{2,3}}
48: {{1,3},{2,3}}
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for spanning edge-connectivity 1 are
A327111.
Integer partitions with cut-connectivity 1 are counted by
A322390.
Labeled connected separable graphs are counted by
A327114.
Connected separable set-systems are counted by
A327197.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==1&]
A327079
Number of labeled simple connected graphs covering n vertices with at least one bridge that is not an endpoint/leaf (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 0, 1, 0, 12, 180, 4200, 157920, 9673664, 1011129840, 190600639200, 67674822473280, 46325637863907072, 61746583700640860736, 161051184122415878112640, 824849999242893693424992000, 8317799170120961768715123118080
Offset: 0
The non-covering version is
A327231.
Connected bridged graphs (spanning edge-connectivity 1) are
A327071.
BII-numbers of graphs with non-spanning edge-connectivity 1 are
A327099.
Covering set-systems with non-spanning edge-connectivity 1 are
A327129.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,4}]
A327097
BII-numbers of set-systems with non-spanning edge-connectivity 2.
Original entry on oeis.org
5, 6, 17, 20, 24, 34, 36, 40, 48, 53, 54, 55, 60, 61, 62, 63, 65, 66, 68, 71, 72, 80, 86, 87, 89, 92, 93, 94, 95, 96, 101, 103, 106, 108, 109, 110, 111, 113, 114, 115, 121, 122, 123, 257, 260, 272, 308, 309, 310, 311, 316, 317, 318, 319, 320, 326, 327, 342
Offset: 1
The sequence of all set-systems with non-spanning edge-connectivity 2 together with their BII-numbers begins:
5: {{1},{1,2}}
6: {{2},{1,2}}
17: {{1},{1,3}}
20: {{1,2},{1,3}}
24: {{3},{1,3}}
34: {{2},{2,3}}
36: {{1,2},{2,3}}
40: {{3},{2,3}}
48: {{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
71: {{1},{2},{1,2},{1,2,3}}
BII-numbers for vertex-connectivity 2 are
A327082.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for non-spanning edge-connectivity > 1 are
A327102.
BII-numbers for spanning edge-connectivity 2 are
A327108.
Cf.
A007146,
A048793,
A052446,
A059166,
A070939,
A095983,
A263296,
A322335,
A322338,
A322395,
A326031,
A327041,
A327069,
A327111.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
Select[Range[0,100],edgeConn[bpe[#]]==2&]
A327102
BII-numbers of set-systems with non-spanning edge-connectivity >= 2.
Original entry on oeis.org
5, 6, 17, 20, 21, 24, 34, 36, 38, 40, 48, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1
The sequence of all set-systems with non-spanning edge-connectivity >= 2 together with their BII-numbers begins:
5: {{1},{1,2}}
6: {{2},{1,2}}
17: {{1},{1,3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
24: {{3},{1,3}}
34: {{2},{2,3}}
36: {{1,2},{2,3}}
38: {{2},{1,2},{2,3}}
40: {{3},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
56: {{3},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
Graphs with spanning edge-connectivity >= 2 are counted by
A095983.
Graphs with non-spanning edge-connectivity >= 2 are counted by
A322395.
Also positions of terms >=2 in
A326787.
BII-numbers for non-spanning edge-connectivity 2 are
A327097.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for spanning edge-connectivity >= 2 are
A327109.
Cf.
A000120,
A048793,
A059166,
A070939,
A263296,
A326031,
A326749,
A327076,
A327101,
A327102,
A327108,
A327148.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
Select[Range[0,100],edgeConn[bpe[#]]>=2&]
A327145
Number of connected set-systems with n vertices and at least one bridge (spanning edge-connectivity 1).
Original entry on oeis.org
0, 1, 4, 56, 4640
Offset: 0
The BII-numbers of these set-systems are
A327111.
Set systems with non-spanning edge-connectivity 1 are
A327196, with covering case
A327129.
Set systems with spanning edge-connectivity 2 are
A327130.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],spanEdgeConn[Range[n],#]==1&]],{n,0,3}]
A327236
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 4, 5, 10, 8, 5, 1, 1
Offset: 0
Triangle begins:
1
1
1 1
1 1 1 1
2 2 3 3 1
4 5 10 8 5 1 1
Spanning edge-connectivity is
A263296.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327129
Number of connected set-systems covering n vertices with at least one edge whose removal (along with any non-covered vertices) disconnects the set-system (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 1, 2, 35, 2804
Offset: 0
The a(3) = 35 set-systems:
{123} {1}{12}{23} {1}{2}{12}{13} {1}{2}{3}{12}{13}
{1}{13}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23}
{1}{2}{123} {1}{2}{13}{23} {1}{2}{3}{13}{23}
{1}{3}{123} {1}{2}{3}{123} {1}{2}{3}{12}{123}
{2}{12}{13} {1}{3}{12}{13} {1}{2}{3}{13}{123}
{2}{13}{23} {1}{3}{12}{23} {1}{2}{3}{23}{123}
{2}{3}{123} {1}{3}{13}{23}
{3}{12}{13} {2}{3}{12}{13}
{3}{12}{23} {2}{3}{12}{23}
{1}{23}{123} {2}{3}{13}{23}
{2}{13}{123} {1}{2}{13}{123}
{3}{12}{123} {1}{2}{23}{123}
{1}{3}{12}{123}
{1}{3}{23}{123}
{2}{3}{12}{123}
{2}{3}{13}{123}
The restriction to simple graphs is
A327079, with non-covering version
A327231.
The version for spanning edge-connectivity is
A327145, with BII-numbers
A327111.
The BII-numbers of these set-systems are
A327099.
The non-covering version is
A327196.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,3}]
Showing 1-10 of 14 results.
Comments