A095983
Number of 2-edge-connected labeled graphs on n nodes.
Original entry on oeis.org
0, 0, 0, 1, 10, 253, 11968, 1047613, 169181040, 51017714393, 29180467201536, 32121680070545657, 68867078000231169536, 290155435185687263172693, 2417761175748567327193407488, 40013922635723692336670167608181, 1318910073755307133701940625759574016
Offset: 0
Yifei Chen (yifei(AT)mit.edu), Jul 17 2004
Row sums of
A327069 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are
A327109.
Graphs with spanning edge-connectivity 2 are
A327146.
Graphs with non-spanning edge-connectivity >= 2 are
A327200.
2-vertex-connected graphs are
A013922.
Graphs without endpoints are
A059167.
Graphs with spanning edge-connectivity 1 are
A327071.
-
seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[ Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k-1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
seq[16] (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]>=2&]],{n,0,5}] (* Gus Wiseman, Sep 20 2019 *)
-
\\ here p is initially A053549, q is A198046 as e.g.f.s.
seq(n)={my(v=vector(n));
my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))));
my(q=x*exp(p)); p-=q;
for(k=3, n, my(c=polcoeff(p,k)); v[k]=c*(k-1)!; p-=c*q^k);
concat([0],v)} \\ Andrew Howroyd, Jun 18 2018
-
seq(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))/x-1), -(n+1))} \\ Andrew Howroyd, Dec 28 2020
A007146
Number of unlabeled simple connected bridgeless graphs with n nodes.
Original entry on oeis.org
1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..40 (terms 1..22 from R. J. Mathar)
- P. Hanlon and R. W. Robinson, Counting bridgeless graphs, J. Combin. Theory, B 33 (1982), 276-305, Table III.
- Eric Weisstein's World of Mathematics, Bridgeless Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Simple Graph
- Gus Wiseman, The a(3) = 1 through a(5) = 11 connected bridgeless graphs.
Cf.
A005470 (number of simple graphs).
Cf.
A007145 (number of simple connected rooted bridgeless graphs).
Cf.
A052446 (number of simple connected bridged graphs).
Cf.
A263914 (number of simple bridgeless graphs).
Cf.
A263915 (number of simple bridged graphs).
Row sums of
A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are
A327109.
Graphs with non-spanning edge-connectivity >= 2 are
A327200.
2-vertex-connected graphs are
A013922.
Cf.
A000719,
A001349,
A002494,
A261919,
A327069,
A327071,
A327074,
A327075,
A327077,
A327109,
A327144,
A327146.
-
\\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020
Reference gives first 22 terms.
A327071
Number of labeled simple connected graphs with n vertices and at least one bridge, or graphs with spanning edge-connectivity 1.
Original entry on oeis.org
0, 0, 1, 3, 28, 475, 14736, 818643, 82367552, 15278576679, 5316021393280, 3519977478407687, 4487518206535452672, 11116767463976825779115, 53887635281876408097483776, 513758302006787897939587736715, 9668884580476067306398361085853696
Offset: 0
Connected graphs without bridges are
A007146.
The enumeration of labeled connected graphs by number of bridges is
A327072.
Connected graphs with exactly one bridge are
A327073.
Graphs with non-spanning edge-connectivity 1 are
A327079.
BII-numbers of set-systems with spanning edge-connectivity 1 are
A327111.
Covering set-systems with spanning edge-connectivity 1 are
A327145.
Graphs with spanning edge-connectivity 2 are
A327146.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==1&]],{n,0,4}]
A263296
Triangle read by rows: T(n,k) is the number of graphs with n vertices with edge connectivity k.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 10, 8, 2, 1, 44, 52, 41, 15, 3, 1, 191, 351, 352, 121, 25, 3, 1, 1229, 3714, 4820, 2159, 378, 41, 4, 1, 13588, 63638, 113256, 68715, 14306, 1095, 65, 4, 1, 288597, 1912203, 4602039, 3952378, 1141575, 104829, 3441, 100, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 3, 2, 1;
13, 10, 8, 2, 1;
44, 52, 41, 15, 3, 1;
191, 351, 352, 121, 25, 3, 1;
1229, 3714, 4820, 2159, 378, 41, 4, 1;
...
Columns k=0..10 are
A000719,
A052446,
A052447,
A052448,
A241703,
A241704,
A241705,
A324096,
A324097,
A324098,
A324099.
Cf.
A002494,
A095983,
A259862,
A327076,
A327108,
A327109,
A327111,
A327144,
A327145,
A327147,
A327236.
A052447
Number of simple unlabeled n-node graphs of edge-connectivity 2.
Original entry on oeis.org
0, 0, 1, 2, 8, 41, 352, 4820, 113256, 4602039, 325754696, 40348545658
Offset: 1
A327079
Number of labeled simple connected graphs covering n vertices with at least one bridge that is not an endpoint/leaf (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 0, 1, 0, 12, 180, 4200, 157920, 9673664, 1011129840, 190600639200, 67674822473280, 46325637863907072, 61746583700640860736, 161051184122415878112640, 824849999242893693424992000, 8317799170120961768715123118080
Offset: 0
The non-covering version is
A327231.
Connected bridged graphs (spanning edge-connectivity 1) are
A327071.
BII-numbers of graphs with non-spanning edge-connectivity 1 are
A327099.
Covering set-systems with non-spanning edge-connectivity 1 are
A327129.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,4}]
A327099
BII-numbers of set-systems with non-spanning edge-connectivity 1.
Original entry on oeis.org
1, 2, 4, 7, 8, 16, 22, 23, 25, 28, 29, 30, 31, 32, 37, 39, 42, 44, 45, 46, 47, 49, 50, 51, 57, 58, 59, 64, 67, 73, 74, 75, 76, 77, 78, 79, 82, 83, 90, 91, 97, 99, 105, 107, 128, 256, 262, 263, 278, 279, 280, 281, 284, 285, 286, 287, 292, 293, 294, 295, 300
Offset: 1
The sequence of all set-systems with non-spanning edge-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
4: {{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
16: {{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
25: {{1},{3},{1,3}}
28: {{1,2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
32: {{2,3}}
37: {{1},{1,2},{2,3}}
39: {{1},{2},{1,2},{2,3}}
42: {{2},{3},{2,3}}
44: {{1,2},{3},{2,3}}
45: {{1},{1,2},{3},{2,3}}
46: {{2},{1,2},{3},{2,3}}
Simple graphs with non-spanning edge-connectivity 1 are
A327071.
BII-numbers for non-spanning edge-connectivity >= 1 are
A326749.
BII-numbers for non-spanning edge-connectivity 2 are
A327097.
BII-numbers for spanning edge-connectivity 1 are
A327111.
BII-numbers for vertex-connectivity 1 are
A327114.
Covering set-systems with non-spanning edge-connectivity 1 are counted by
A327129.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
Select[Range[0,100],edgeConn[bpe[#]]==1&]
A327097
BII-numbers of set-systems with non-spanning edge-connectivity 2.
Original entry on oeis.org
5, 6, 17, 20, 24, 34, 36, 40, 48, 53, 54, 55, 60, 61, 62, 63, 65, 66, 68, 71, 72, 80, 86, 87, 89, 92, 93, 94, 95, 96, 101, 103, 106, 108, 109, 110, 111, 113, 114, 115, 121, 122, 123, 257, 260, 272, 308, 309, 310, 311, 316, 317, 318, 319, 320, 326, 327, 342
Offset: 1
The sequence of all set-systems with non-spanning edge-connectivity 2 together with their BII-numbers begins:
5: {{1},{1,2}}
6: {{2},{1,2}}
17: {{1},{1,3}}
20: {{1,2},{1,3}}
24: {{3},{1,3}}
34: {{2},{2,3}}
36: {{1,2},{2,3}}
40: {{3},{2,3}}
48: {{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
71: {{1},{2},{1,2},{1,2,3}}
BII-numbers for vertex-connectivity 2 are
A327082.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for non-spanning edge-connectivity > 1 are
A327102.
BII-numbers for spanning edge-connectivity 2 are
A327108.
Cf.
A007146,
A048793,
A052446,
A059166,
A070939,
A095983,
A263296,
A322335,
A322338,
A322395,
A326031,
A327041,
A327069,
A327111.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
Select[Range[0,100],edgeConn[bpe[#]]==2&]
A327077
Triangle read by rows where T(n,k) is the number of unlabeled simple connected graphs with n vertices and k bridges.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 0, 2, 0, 11, 4, 3, 0, 3, 0, 60, 25, 14, 7, 0, 6, 0, 502, 197, 91, 34, 18, 0, 11, 0, 7403, 2454, 826, 267, 100, 44, 0, 23, 0, 197442, 48201, 11383, 2800, 831, 259, 117, 0, 47, 0
Offset: 0
Triangle begins:
1
1 0
0 1 0
1 0 1 0
3 1 0 2 0
11 4 3 0 3 0
60 25 14 7 0 6 0
502 197 91 34 18 0 11 0
7403 2454 826 267 100 44 0 23 0
...
Row sums without the k = 0 column are
A052446.
A327073
Number of labeled simple connected graphs with n vertices and exactly one bridge.
Original entry on oeis.org
0, 0, 1, 0, 12, 200, 7680, 506856, 58934848, 12205506096, 4595039095680, 3210660115278000, 4240401342141499392, 10743530775519296581944, 52808688280248604235191296, 507730995579614277599205009240, 9603347831901155679455061048606720, 358743609478638769812094362544644831968
Offset: 0
Connected graphs with no bridges are
A007146.
Connected graphs whose bridges are all leaves are
A322395.
Connected graphs with at least one bridge are
A327071.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==1&]],{n,0,5}]
-
\\ See A095983.
seq(n)={my(p=x*deriv(log(sum(k=0, n-1, 2^binomial(k, 2) * x^k / k!) + O(x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))^2/2), -(n+1)) } \\ Andrew Howroyd, Dec 28 2020
Showing 1-10 of 24 results.
Comments