cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A095983 Number of 2-edge-connected labeled graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 1, 10, 253, 11968, 1047613, 169181040, 51017714393, 29180467201536, 32121680070545657, 68867078000231169536, 290155435185687263172693, 2417761175748567327193407488, 40013922635723692336670167608181, 1318910073755307133701940625759574016
Offset: 0

Views

Author

Yifei Chen (yifei(AT)mit.edu), Jul 17 2004

Keywords

Comments

From Falk Hüffner, Jun 28 2018: (Start)
Essentially the same sequence arises as the number of connected bridgeless labeled graphs (graphs that are k-edge connected for k >= 2, starting elements of this sequence are 1, 1, 0, 1, 10, 253, 11968, ...).
Labeled version of A007146. (End)
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. This sequence counts graphs with spanning edge-connectivity >= 2, which, for n > 1, are connected graphs with no bridges. - Gus Wiseman, Sep 20 2019

Crossrefs

The unlabeled version is A007146.
Row sums of A327069 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with spanning edge-connectivity 2 are A327146.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.
Graphs without endpoints are A059167.
Graphs with spanning edge-connectivity 1 are A327071.

Programs

  • Mathematica
    seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[ Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k-1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
    seq[16] (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]>=2&]],{n,0,5}] (* Gus Wiseman, Sep 20 2019 *)
  • PARI
    \\ here p is initially A053549, q is A198046 as e.g.f.s.
    seq(n)={my(v=vector(n));
    my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))));
    my(q=x*exp(p)); p-=q;
    for(k=3, n, my(c=polcoeff(p,k)); v[k]=c*(k-1)!; p-=c*q^k);
    concat([0],v)} \\ Andrew Howroyd, Jun 18 2018
    
  • PARI
    seq(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))/x-1), -(n+1))} \\ Andrew Howroyd, Dec 28 2020

Formula

a(n) = A001187(n) - A327071(n). - Gus Wiseman, Sep 20 2019

Extensions

Name corrected and more terms from Pavel Irzhavski, Nov 01 2014
Offset corrected by Falk Hüffner, Jun 17 2018
a(12)-a(16) from Andrew Howroyd, Jun 18 2018

A007146 Number of unlabeled simple connected bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1

Views

Author

Keywords

Comments

Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - Gus Wiseman, Sep 02 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005470 (number of simple graphs).
Cf. A007145 (number of simple connected rooted bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
The labeled version is A095983.
Row sums of A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.

Programs

  • PARI
    \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) = A001349(n) - A052446(n). - Gus Wiseman, Sep 02 2019

Extensions

Reference gives first 22 terms.

A327071 Number of labeled simple connected graphs with n vertices and at least one bridge, or graphs with spanning edge-connectivity 1.

Original entry on oeis.org

0, 0, 1, 3, 28, 475, 14736, 818643, 82367552, 15278576679, 5316021393280, 3519977478407687, 4487518206535452672, 11116767463976825779115, 53887635281876408097483776, 513758302006787897939587736715, 9668884580476067306398361085853696
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph.

Crossrefs

Column k = 1 of A327069.
The unlabeled version is A052446.
Connected graphs without bridges are A007146.
The enumeration of labeled connected graphs by number of bridges is A327072.
Connected graphs with exactly one bridge are A327073.
Graphs with non-spanning edge-connectivity 1 are A327079.
BII-numbers of set-systems with spanning edge-connectivity 1 are A327111.
Covering set-systems with spanning edge-connectivity 1 are A327145.
Graphs with spanning edge-connectivity 2 are A327146.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==1&]],{n,0,4}]

Formula

a(1) = 0; a(n > 1) = A001187(n) - A095983(n).

A052446 Number of unlabeled simple connected bridged graphs on n nodes.

Original entry on oeis.org

0, 1, 1, 3, 10, 52, 351, 3714, 63638, 1912203, 103882478, 10338614868, 1892863194064, 639799762452639, 400857034314325045, 467526363203064793081, 1019286659457016864347582, 4170114225096278323394128049, 32130213534058019378134295287305
Offset: 1

Views

Author

Eric W. Weisstein, May 08 2000

Keywords

Comments

These are unlabeled connected graphs with spanning edge-connectivity 1, where the spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph. - Gus Wiseman, Sep 02 2019

Crossrefs

Cf. other k-edge-connected unlabeled graph sequences A052446, A052447, A052448, A241703, A241704, A241705.
Cf. A001349 (number of simple connected graphs).
Cf. A007146 (number of simple connected bridgeless graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
Column k = 1 of A263296.
Row sums of A327077 if the first column is removed.
BII-numbers of set-systems with spanning edge-connectivity 1 are A327111.
The labeled version is A327071.

Programs

Formula

a(n) = A001349(n) - A007146(n).

Extensions

a(8) and a(9) and better description by Eric W. Weisstein, Nov 07 2010
a(10) from the Encyclopedia of Finite Graphs by Travis Hoppe and Anna Petrone, Apr 22 2014
Additional terms from A001349 and A007146 by Eric W. Weisstein, Oct 29 2015
a(18)-a(22) from A001349 and A007146 by Jean-François Alcover, Nov 09 2019

A263296 Triangle read by rows: T(n,k) is the number of graphs with n vertices with edge connectivity k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 10, 8, 2, 1, 44, 52, 41, 15, 3, 1, 191, 351, 352, 121, 25, 3, 1, 1229, 3714, 4820, 2159, 378, 41, 4, 1, 13588, 63638, 113256, 68715, 14306, 1095, 65, 4, 1, 288597, 1912203, 4602039, 3952378, 1141575, 104829, 3441, 100, 5, 1
Offset: 1

Views

Author

Christian Stump, Oct 13 2015

Keywords

Comments

This is spanning edge-connectivity. The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. The non-spanning edge-connectivity of a graph (A327236) is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty. Compare to vertex-connectivity (A259862). - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
     1;
     1,    1;
     2,    1,    1;
     5,    3,    2,    1;
    13,   10,    8,    2,   1;
    44,   52,   41,   15,   3,  1;
   191,  351,  352,  121,  25,  3, 1;
  1229, 3714, 4820, 2159, 378, 41, 4, 1;
  ...
		

Crossrefs

Row sums give A000088, n >= 1.
Number of graphs with edge connectivity at least k for k=1..10 are A001349, A007146, A324226, A324227, A324228, A324229, A324230, A324231, A324232, A324233.
The labeled version is A327069.

Extensions

a(22)-a(55) added by Andrew Howroyd, Aug 11 2019

A327334 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 490, 212, 25, 1, 0, 6064, 15336, 9600, 1692, 75, 1, 0, 230896, 851368, 789792, 210140, 14724, 231, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. Except for complete graphs, this is the same as cut-connectivity (A327125).

Examples

			Triangle begins:
    1
    1   0
    1   1   0
    4   3   1   0
   26  28   9   1   0
  296 490 212  25   1   0
		

Crossrefs

The unlabeled version is A259862.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = A054592(1) = 1.
Column k = 1 is A327336.
Row sums without the first column are A001187, if we assume A001187(0) = A001187(1) = 0.
Row sums without the first two columns are A013922, if we assume A013922(1) = 0.
Cut-connectivity is A327125.
Spanning edge-connectivity is A327069.
Non-spanning edge-connectivity is A327148.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==k&]],{n,0,5},{k,0,n}]

Extensions

a(21)-a(35) from Robert Price, May 14 2021

A327111 BII-numbers of set-systems with spanning edge-connectivity 1.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 88, 89, 90, 91, 96, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty set-system.

Examples

			The sequence of all set-systems with spanning edge-connectivity 1 together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  28: {{1,2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  32: {{2,3}}
		

Crossrefs

Graphs with spanning edge-connectivity >= 2 are counted by A095983.
BII-numbers for vertex-connectivity 1 are A327098.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for spanning edge-connectivity 2 are A327108.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
Set-systems with spanning edge-connectivity 2 are counted by A327130.
Graphs with spanning edge-connectivity 1 are counted by A327145.
Graphs with spanning edge-connectivity 2 are counted by A327146.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Select[Range[0,100],spanEdgeConn[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]

A327144 Spanning edge-connectivity of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Positions of first appearances of each integer together with the corresponding set-systems:
     0: {}
     1: {{1}}
    52: {{1,2},{1,3},{2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
  3952: {{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4}}
  8052: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}}
		

Crossrefs

Dominated by A327103.
The same for cut-connectivity is A326786.
The same for non-spanning edge-connectivity is A326787.
The same for vertex-connectivity is A327051.
Positions of 1's are A327111.
Positions of 2's are A327108.
Positions of first appearance of each integer are A327147.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[spanEdgeConn[Union@@bpe/@bpe[n],bpe/@bpe[n]],{n,0,100}]

A327108 BII-numbers of set-systems with spanning edge-connectivity 2.

Original entry on oeis.org

52, 53, 54, 55, 60, 61, 62, 63, 84, 85, 86, 87, 92, 93, 94, 95, 100, 101, 102, 103, 108, 109, 110, 111, 112, 113, 114, 115, 120, 121, 122, 123, 772, 773, 774, 775, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 848, 849, 850
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

Differs from A327109 in lacking 116, 117, 118, 119, 124, 125, 126, 127, ...
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty set-system.

Examples

			The sequence of all set-systems with spanning edge-connectivity 2 together with their BII-numbers begins:
   52: {{1,2},{1,3},{2,3}}
   53: {{1},{1,2},{1,3},{2,3}}
   54: {{2},{1,2},{1,3},{2,3}}
   55: {{1},{2},{1,2},{1,3},{2,3}}
   60: {{1,2},{3},{1,3},{2,3}}
   61: {{1},{1,2},{3},{1,3},{2,3}}
   62: {{2},{1,2},{3},{1,3},{2,3}}
   63: {{1},{2},{1,2},{3},{1,3},{2,3}}
   84: {{1,2},{1,3},{1,2,3}}
   85: {{1},{1,2},{1,3},{1,2,3}}
   86: {{2},{1,2},{1,3},{1,2,3}}
   87: {{1},{2},{1,2},{1,3},{1,2,3}}
   92: {{1,2},{3},{1,3},{1,2,3}}
   93: {{1},{1,2},{3},{1,3},{1,2,3}}
   94: {{2},{1,2},{3},{1,3},{1,2,3}}
   95: {{1},{2},{1,2},{3},{1,3},{1,2,3}}
  100: {{1,2},{2,3},{1,2,3}}
  101: {{1},{1,2},{2,3},{1,2,3}}
  102: {{2},{1,2},{2,3},{1,2,3}}
  103: {{1},{2},{1,2},{2,3},{1,2,3}}
		

Crossrefs

Positions of 2's in A327144.
Graphs with spanning edge-connectivity >= 2 are counted by A095983.
Graphs with spanning edge-connectivity 2 are counted by A327146.
Set-systems with spanning edge-connectivity 2 are counted by A327130.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
BII-numbers for spanning edge-connectivity 1 are A327111.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Select[Range[0,100],spanEdgeConn[Union@@bpe/@bpe[#],bpe/@bpe[#]]==2&]

A327125 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and cut-connectivity k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 26, 28, 9, 0, 1, 296, 490, 212, 25, 0, 1, 6064, 15336, 9600, 1692, 75, 0, 1, 230896
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex and no edges has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity.

Examples

			Triangle begins:
    1
    0   1
    1   0   1
    4   3   0   1
   26  28   9   0   1
  296 490 212  25   0   1
		

Crossrefs

After the first column, same as A327126.
The unlabeled version is A327127.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = 1.
Column k = 1 is A327114, if we assume A327114(1) = 1.
Row sums without the first column are A001187.
Row sums without the first two columns are A013922.
Different from A327069.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]

Extensions

a(21)-a(28) from Robert Price, May 20 2021
a(1) and a(2) corrected by Robert Price, May 20 2021
Showing 1-10 of 24 results. Next