cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000944 Number of polyhedra (or 3-connected simple planar graphs) with n nodes.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 34, 257, 2606, 32300, 440564, 6384634, 96262938, 1496225352, 23833988129, 387591510244, 6415851530241, 107854282197058
Offset: 1

Views

Author

Keywords

References

  • H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, B15.
  • M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
  • B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
  • Y. Y. Prokhorov, ed., Mnogogrannik [Polyhedron], Mathematical Encyclopedia Dictionary, Soviet Encyclopedia, 1988.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. M. Ziegler, Questions about polytopes, pp. 1195-1211 of Mathematics Unlimited - 2001 and Beyond, ed. B. Engquist and W. Schmid, Springer-Verlag, 2001.

Crossrefs

Extensions

More terms from Brendan McKay
a(18) from Brendan McKay, Jun 02 2006

A049337 Triangle read by rows: T(n,k) is the number of 3-connected planar graphs (or polyhedra) with n >= 1 nodes and 0 <= k <= C(n,2) edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 8, 11, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 11, 42, 74, 76, 38, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 74, 296, 633, 768, 558, 219, 50
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins
  0;
  0,0;
  0,0,0,0;
  0,0,0,1,0,0,0;
  0,0,0,0,0,1,1,0,0,0;
  0,0,0,0,0,0,1,2,2,...;
  ...
From _Hugo Pfoertner_, Nov 24 2020: (Start)
Transposed table:
.
                              Nodes                        Sums
       4  5  6   7   8    9    10     11     12    13  14 |A002840
  Edges-+--+--+---+---+----+-----+------+------+-----+---+|-------
   6 | 1  .  .   .   .    .     .      .      .     .   . |      1
   7 | .  .  .   .   .    .     .      .      .     .   . |      0
   8 | .  1  .   .   .    .     .      .      .     .   . |      1
   9 | .  1  1   .   .    .     .      .      .     .   . |      2
  10 | .  .  2   .   .    .     .      .      .     .   . |      2
  11 | .  .  2   2   .    .     .      .      .     .   . |      4
  12 | .  .  2   8   2    .     .      .      .     .   . |     12
  13 | .  .  .  11  11    .     .      .      .     .   . |     22
  14 | .  .  .   8  42    8     .      .      .     .   . |     58
  15 | .  .  .   5  74   74     5      .      .     .   . |    158
  16 | .  .  .   .  76  296    76      .      .     .   . |    448
  17 | .  .  .   .  38  633   633     38      .     .   . |   1342
  18 | .  .  .   .  14  768  2635    768     14     .   . |   4199
  19 | .  .  .   .   .  538  6134   6134    558     .   . |  13384
  20 | .  .  .   .   .  219  8822  25626   8822   219   . |  43708
  21 | .  .  .   .   .   50  7916  64439  64439  7916  50 | 144810
  .. | .  .  .   .   .    .    ..     ..     ..    ..  .. |     ..
     ---+--+--+---+---+----+-----+------+-------+----+---+
  Sums 1  2  7  34 257 2606 32300 440564 6384634 .. A000944
(End)
		

Crossrefs

A049337, A058787, A212438 are all versions of the same triangle.
Cf. A058788.

Extensions

Missing zeros inserted by Sean A. Irvine, Jul 29 2021

A034889 Number of embeddings on the sphere of 2-connected planar graphs with n nodes.

Original entry on oeis.org

1, 3, 10, 61, 564, 7593, 123874, 2262877, 44190279, 904777809, 19207129217, 419870351012, 9405626692325
Offset: 3

Views

Author

Ronald C. Read

Keywords

Comments

The complete graph on two vertices is sometimes considered to be 2-connected (or nonseparable). Compare A002218 with A021103. - Andrew Howroyd, Mar 01 2021

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

Row sums of A342060.

Extensions

a(8)-a(15) added by Mohammadreza Jooyandeh, Sep 03 2013

A049336 Table read by rows: T(n,k) = number of 2-connected planar graphs with n >= 1 nodes and 0 <= k <= 3n-6 edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0, 0, 1, 3, 9, 13, 11, 5, 2, 0, 0, 0, 0, 0, 0, 0, 1, 4, 20, 49, 77, 75, 47, 16, 5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 40, 158, 406, 662, 737, 538, 259, 72, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 70, 426, 1645, 4176, 7307, 8871, 7541, 4353, 1671, 378, 50
Offset: 1

Views

Author

Keywords

Examples

			Table begins:
  0;
  0, 0;
  0, 0, 0, 1;
  0, 0, 0, 0, 1, 1, 1;
  0, 0, 0, 0, 0, 1, 2, 3, 2,  1;
  0, 0, 0, 0, 0, 0, 1, 3, 9, 13, 11,  5,  2;
  0, 0, 0, 0, 0, 0, 0, 1, 4, 20, 49, 77, 75, 47, 16, 5;
  ...
		

Crossrefs

Extensions

More terms, a(86) onwards, from Gilbert Labelle (labelle.gilbert(AT)uqam.ca), Jan 20 2009

A343869 Number of unlabeled nonseparable (or 2-connected) planar graphs with n edges.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 7, 16, 41, 108, 320, 1042, 3575, 13064, 49938, 197729, 805991, 3363084, 14302891, 61813285, 270805177, 1200460492, 5376709415, 24302430375, 110745093999, 508380790741
Offset: 1

Views

Author

Andrew Howroyd, May 04 2021

Keywords

Comments

Terms may be computed using the tools geng and planarg in nauty.

Crossrefs

Row sums of A343870.
Column sums of A049336(n > 1).
Cf. A002840 (3-connected), A010355, A021103, A046091, A289471, A291841.

Programs

  • nauty
    # count graphs for the sequence by number of vertices v, sum over v afterwards
    geng -C $v $n:$n | planarg -q | countg -q # Georg Grasegger, Jun 05 2023

Extensions

a(21)-a(26) added by Georg Grasegger, Jun 05 2023

A187928 Number of embeddings on the sphere of planar graphs with n edges having connectivity exactly 2 and minimum vertex degree at least 3.

Original entry on oeis.org

1, 2, 4, 15, 42, 135, 440, 1480, 5106, 17890, 63264, 226018, 812354, 2936837, 10666188, 38901190, 142386358
Offset: 10

Views

Author

Stuart E Anderson, Mar 16 2011

Keywords

Comments

The graphs are 2-connected, but not 3-connected. The graphs were enumerated using plantri (by B.D. McKay & G. Brinkmann) for the purpose of finding compound perfect squared squares. If all graphs with n edges are generated then all compound squares in order n-1 can be obtained from them. Graphs with minimum degree at least 3 are also called homeomorphically irreducible.

Crossrefs

Antidiagonal sums of A378077.

Programs

  • plantri
    plantri -p -c2 -m3 -e# -x -u -v n
    
  • plantri
    plantri -pc2m3e#xuv n # to count graphs by node number (n) and edge number (#)

Extensions

a(22) corrected by Stuart E Anderson, Feb 24 2013
a(23)-a(26) from Lorenz Milla, Oct 08 2013
a(11) corrected by Andrew Howroyd, Nov 15 2024

A343870 Triangle read by rows: T(n,k) is the number of unlabeled nonseparable (or 2-connected) planar graphs with n edges and k nodes (n >= 1, 2 <= k <= n + 1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 3, 3, 1, 0, 0, 0, 0, 2, 9, 4, 1, 0, 0, 0, 0, 1, 13, 20, 6, 1, 0, 0, 0, 0, 0, 11, 49, 40, 7, 1, 0, 0, 0, 0, 0, 5, 77, 158, 70, 9, 1, 0, 0, 0, 0, 0, 2, 75, 406, 426, 121, 11, 1, 0, 0, 0, 0, 0, 0, 47, 662, 1645, 1018, 189, 13, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, May 04 2021

Keywords

Examples

			Triangle T(n,k) begins (n edges >= 1, k vertices >= 2):
  1;
  0, 0;
  0, 1, 0;
  0, 0, 1, 0;
  0, 0, 1, 1,  0;
  0, 0, 1, 2,  1,  0;
  0, 0, 0, 3,  3,  1,   0;
  0, 0, 0, 2,  9,  4,   1,   0;
  0, 0, 0, 1, 13, 20,   6,   1,   0;
  0, 0, 0, 0, 11, 49,  40,   7,   1,  0;
  0, 0, 0, 0,  5, 77, 158,  70,   9,  1, 0;
  0, 0, 0, 0,  2, 75, 406, 426, 121, 11, 1, 0;
  ...
		

Crossrefs

Row sums are A343869.
Column sums are A021103.
Cf. A049334, A049336 (transpose), A049337, A253186, A339070.

Programs

  • nauty
    geng -C $k $n:$n | planarg -q | countg -q # Georg Grasegger, Jun 05 2023

Formula

T(n, n) = 1 for n >= 3.
T(n, n-1) = A253186(n-3) for n >= 3.

A049340 Triangle read by rows: T(n,k) is the number of planar graphs with n >= 1 nodes and 0 <= k <= binomial(n,2) edges, all degrees even.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 3, 2, 2, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 3, 4, 4, 6, 5, 5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 3, 4, 7, 9, 15, 17, 22, 14, 16, 5, 4, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1, 0;
  1, 0, 0, 1;
  1, 0, 0, 1, 1, 0, 0;
  1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0;
  1, 0, 0, 1, 1, 1, 3, 2, 2, 1, 1, 0, 1, 0, 0, 0;
  ...
		

Crossrefs

Rows sums give A049339.

Extensions

Entry revised by Sean A. Irvine, Jul 29 2021

A361578 Number of 5-connected polyhedra (or 5-connected simple planar graphs) with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 5, 8, 30, 85, 382, 1550, 7352
Offset: 12

Views

Author

Manfred Scheucher, Mar 16 2023

Keywords

Comments

The icosahedral graph is the smallest 5-connected planar graph.

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Cf. A049373 (planar graphs with minimum degree~5) and A111358 (5-connected planar trianguations)

A361369 Number of weakly 2-connected simple planar digraphs with n unlabeled nodes.

Original entry on oeis.org

7, 129, 6865, 774052
Offset: 3

Views

Author

Manfred Scheucher, Mar 09 2023

Keywords

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Directed variant of A021103.
Showing 1-10 of 10 results.