A002840 Number of polyhedral graphs with n edges.
1, 0, 1, 2, 2, 4, 12, 22, 58, 158, 448, 1342, 4199, 13384, 43708, 144810, 485704, 1645576, 5623571, 19358410, 67078828, 233800162, 819267086, 2884908430, 10204782956, 36249143676, 129267865144, 462669746182, 1661652306539, 5986979643542
Offset: 6
References
- M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, personal communication.
Links
- C. J. Bouwkamp & N. J. A. Sloane, Correspondence, 1971
- A. J. W. Duijvestijn and P. J. Federico, The number of polyhedral (3-connected planar) graphs, Math. Comp. 37 (1981), no. 156, 523-532.
- P. J. Federico, Enumeration of polyhedra: the number of 9-hedra, J. Combin. Theory, 7 (1969), 155-161.
- G. P. Michon, Counting Polyhedra - Numericana
- Hugo Pfoertner, Unlabeled 3-connected planar graphs for n<=20 edges, list in PARI-readable format.
- Eric Weisstein's World of Mathematics, Polyhedral Graph
- T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices
Programs
-
PARI
\\ It is assumed that the 3cp.gp file (from the linked zip archive) has been read before, i.e., \r [path]3cp.gp for(k=6,#ThreeConnectedData,print1(#ThreeConnectedData[k],", ")); \\ printing of the edge lists of the graphs for n <= 11 print(ThreeConnectedData[6..11]) \\ Hugo Pfoertner, Feb 14 2021
Extensions
a(30)-a(35) from the Numericana link added by Andrey Zabolotskiy, Jun 13 2020
Comments