A228154 T(n,k) is the number of s in {1,...,n}^n having longest contiguous subsequence with the same value of length k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 2, 2, 12, 12, 3, 108, 120, 24, 4, 1280, 1520, 280, 40, 5, 18750, 23400, 3930, 510, 60, 6, 326592, 423360, 65016, 7644, 840, 84, 7, 6588344, 8800008, 1241464, 132552, 13440, 1288, 112, 8, 150994944, 206622720, 26911296, 2622528, 244944, 22032, 1872, 144, 9
Offset: 1
Examples
T(1,1) = 1: [1]. T(2,1) = 2: [1,2], [2,1]. T(2,2) = 2: [1,1], [2,2]. T(3,1) = 12: [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,1,2], [2,1,3], [2,3,1], [2,3,2], [3,1,2], [3,1,3], [3,2,1], [3,2,3]. T(3,2) = 12: [1,1,2], [1,1,3], [1,2,2], [1,3,3], [2,1,1], [2,2,1], [2,2,3], [2,3,3], [3,1,1], [3,2,2], [3,3,1], [3,3,2]. T(3,3) = 3: [1,1,1], [2,2,2], [3,3,3]. Triangle T(n,k) begins: . 1; . 2, 2; . 12, 12, 3; . 108, 120, 24, 4; . 1280, 1520, 280, 40, 5; . 18750, 23400, 3930, 510, 60, 6; . 326592, 423360, 65016, 7644, 840, 84, 7; . 6588344, 8800008, 1241464, 132552, 13440, 1288, 112, 8;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Project Euler, Problem 427: n-sequences
Crossrefs
Programs
-
Maple
T:= proc(n) option remember; local b; b:= proc(m, s, i) option remember; `if`(m>i or s>m, 0, `if`(i=1, n, `if`(s=1, (n-1)*add(b(m, h, i-1), h=1..m), b(m, s-1, i-1) +`if`(s=m, b(m-1, s-1, i-1), 0)))) end; forget(b); seq(add(b(k, s, n), s=1..k), k=1..n) end: seq(T(n), n=1..12); # Alois P. Heinz, Aug 18 2013
-
Mathematica
T[n_] := T[n] = Module[{b}, b[m_, s_, i_] := b[m, s, i] = If[m>i || s>m, 0, If[i == 1, n, If[s == 1, (n-1)*Sum[b[m, h, i-1], {h, 1, m}], b[m, s-1, i-1] + If[s == m, b[m-1, s-1, i-1], 0]]]]; Table[Sum[b[k, s, n], {s, 1, k}], {k, 1, n}]]; Table[ T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A228194(n). - Alois P. Heinz, Dec 23 2020
Comments