A228617 T(n,k) is the number of s in {1,...,n}^n having shortest run with the same value of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 2, 0, 24, 0, 3, 0, 240, 12, 0, 4, 0, 3080, 40, 0, 0, 5, 0, 46410, 210, 30, 0, 0, 6, 0, 822612, 840, 84, 0, 0, 0, 7, 0, 16771832, 5208, 112, 56, 0, 0, 0, 8, 0, 387395856, 23760, 720, 144, 0, 0, 0, 0, 9, 0, 9999848700, 148410, 2610, 180, 90, 0, 0, 0, 0, 10
Offset: 0
Examples
T(3,1) = 24: [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [1,3,3], [2,1,1], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [2,3,3], [3,1,1], [3,1,2], [3,1,3], [3,2,1], [3,2,2], [3,2,3], [3,3,1], [3,3,2]. T(3,3) = 3: [1,1,1], [2,2,2], [3,3,3]. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 2; 0, 24, 0, 3; 0, 240, 12, 0, 4; 0, 3080, 40, 0, 0, 5; 0, 46410, 210, 30, 0, 0, 6; 0, 822612, 840, 84, 0, 0, 0, 7; 0, 16771832, 5208, 112, 56, 0, 0, 0, 8;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Comments