cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A245651 Decimal expansion of eta/xi = A086318/A086317, a coefficient associated with the asymptotics of the number of weakly binary trees.

Original entry on oeis.org

3, 1, 8, 7, 7, 6, 6, 2, 5, 9, 2, 5, 0, 2, 9, 6, 7, 5, 4, 8, 0, 0, 8, 1, 7, 6, 9, 7, 7, 8, 0, 1, 3, 1, 8, 1, 9, 7, 2, 1, 2, 4, 1, 8, 6, 7, 8, 7, 8, 7, 0, 1, 7, 0, 1, 9, 7, 5, 4, 9, 6, 8, 1, 7, 8, 9, 5, 7, 3, 2, 3, 4, 2, 6, 0, 2, 2, 9, 9, 0, 0, 6, 4, 0, 9, 1
Offset: 0

Views

Author

Jean-François Alcover, Jul 28 2014

Keywords

Examples

			0.31877662592502967548008176977801318197212418678787017019754968178957323426...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, p. 297.

Crossrefs

Programs

  • Mathematica
    digits = 103; Clear[c, k]; c[0] = 2; c[n_] := c[n] = c[n-1]^2 + 2; k[n_] := k[n] = (Sqrt[c[n]^2^(-n)]*Sqrt[3 + Sum[1/Product[c[j], {j, 1, k}], {k, 1, n}]])/(c[n]^2^(-n)*(2*Sqrt[Pi])); k[5]; k[n = 10]; While[RealDigits[k[n], 10, digits] != RealDigits[k[n-5], 10, digits], n = n+5]; RealDigits[k[n], 10, digits] // First

A001190 Wedderburn-Etherington numbers: unlabeled binary rooted trees (every node has outdegree 0 or 2) with n endpoints (and 2n-1 nodes in all).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, 293547, 676157, 1563372, 3626149, 8436379, 19680277, 46026618, 107890609, 253450711, 596572387, 1406818759, 3323236238, 7862958391, 18632325319, 44214569100, 105061603969
Offset: 0

Views

Author

Keywords

Comments

Also number of n-node binary rooted trees (every node has outdegree <= 2) where root has degree 0 (only for n=1) or 1.
a(n+1) is the number of rooted trees with n nodes where the outdegree of every node is <= 2, see example. These trees are obtained by removing the root of the trees in the comment above. - Joerg Arndt, Jun 29 2014
Number of interpretations of x^n (or number of ways to insert parentheses) when multiplication is commutative but not associative. E.g., a(4) = 2: x(x*x^2) and x^2*x^2. a(5) = 3: (x*x^2)x^2, x(x*x*x^2) and x(x^2*x^2). [If multiplication is non-commutative then the answer is A000108(n-1). - Jianing Song, Apr 29 2022]
Number of ways to place n stars in a single bound stable hierarchical multiple star system; i.e., taking only the configurations from A003214 where all stars are included in single outer parentheses. - Piet Hut, Nov 07 2003
Number of colorations of Kn (complete graph of order n) with n-1 colors such that no triangle is three-colored. Two edge-colorations C1 and C2 of G are isomorphic iff exists an automorphism f (isomorphism between G an G) such that: f sends same-colored edges of C1 on same-colored edges of C2 and f^(-1) sends same-colored edges of C2 on same-colored edges of C1. - Abraham Gutiérrez, Nov 12 2012
For n>1, a(n) is the number of (not necessarily distinct) unordered pairs of free unlabeled trees having a total of n nodes. See the first entry in formula section. - Geoffrey Critzer, Nov 09 2014
Named after the English mathematician Ivor Etherington (1908-1994) and the Scottish mathematician Joseph Wedderburn (1882-1948). - Amiram Eldar, May 29 2021

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6+1) = 11 rooted trees with 6 nodes as described in the comment are:
:           level sequence       outdegrees (dots for zeros)
:     1:  [ 0 1 2 3 4 5 ]    [ 1 1 1 1 1 . ]
:  O--o--o--o--o--o
:
:     2:  [ 0 1 2 3 4 4 ]    [ 1 1 1 2 . . ]
:  O--o--o--o--o
:           .--o
:
:     3:  [ 0 1 2 3 4 3 ]    [ 1 1 2 1 . . ]
:  O--o--o--o--o
:        .--o
:
:     4:  [ 0 1 2 3 4 2 ]    [ 1 2 1 1 . . ]
:  O--o--o--o--o
:     .--o
:
:     5:  [ 0 1 2 3 4 1 ]    [ 2 1 1 1 . . ]
:  O--o--o--o--o
:  .--o
:
:     6:  [ 0 1 2 3 3 2 ]    [ 1 2 2 . . . ]
:  O--o--o--o
:        .--o
:     .--o
:
:     7:  [ 0 1 2 3 3 1 ]    [ 2 1 2 . . . ]
:  O--o--o--o
:        .--o
:  .--o
:
:     8:  [ 0 1 2 3 2 3 ]    [ 1 2 1 . 1 . ]
:  O--o--o--o
:     .--o--o
:
:     9:  [ 0 1 2 3 2 1 ]    [ 2 2 1 . . . ]
:  O--o--o--o
:     .--o
:  .--o
:
:    10:  [ 0 1 2 3 1 2 ]    [ 2 1 1 . 1 . ]
:  O--o--o--o
:  .--o--o
:
:    11:  [ 0 1 2 2 1 2 ]    [ 2 2 . . 1 . ]
:  O--o--o
:     .--o
:  .--o--o
:
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 55.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
  • A. Gutiérrez-Sánchez, Shen-colored tournaments, thesis, UNAM, 2012.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.52.
  • Richard P. Stanley, Catalan Numbers, Cambridge, 2015, p. 133.

Crossrefs

Column k=2 of A292085 and of A299038.
Column k=1 of A319539 and of A319541.

Programs

  • Maple
    A001190 := proc(n) option remember; local s,k; if n<=1 then RETURN(n); elif n <=3 then RETURN(1); else s := 0; if n mod 2 = 0 then s := A001190(n/2)*(A001190(n/2)+1)/2; for k from 1 to n/2-1 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); else for k from 1 to (n-1)/2 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); fi; fi; end;
    N := 40: G001190 := add(A001190(n)*x^n,n=0..N);
    spec := [S,{S=Union(Z,Prod(Z,Set(S,card=2)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    # alternative Maple program:
    a:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(a(n/2)))+add(a(i)*a(n-i), i=1..n/2))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    terms = 35; A[] = 0; Do[A[x] = x + (1/2)*(A[x]^2 + A[x^2]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 22 2011, updated Jan 10 2018 *)
    a[n_?OddQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, (n-1)/2}]; a[n_?EvenQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, n/2-1}] + (1/2)*a[n/2]*(1+a[n/2]); a[0]=0; a[1]=1; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jun 13 2012, after recurrence formula *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Nest[ 1 - Sqrt[1 - 2 x - (# /. x -> x^2)] &, 0, BitLength @ n], {x, 0, n}]]; (* Michael Somos, Apr 25 2013 *)
  • PARI
    {a(n) = local(A, m); if( n<0, 0, m=1; A = O(x); while( m<=n, m*=2; A = 1 - sqrt(1 - 2*x - subst(A, x, x^2))); polcoeff(A, n))}; /* Michael Somos, Sep 06 2003 */
    
  • PARI
    {a(n) = local(A); if( n<4, n>0, A = vector(n, i, 1); for( i=4, n, A[i] = sum( j=1, (i-1)\2, A[j] * A[i-j]) + if( i%2, 0, A[i/2] * (A[i/2] + 1)/2)); A[n])}; /* Michael Somos, Mar 25 2006 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A001190(n):
        if n <= 1: return n
        m = n//2 + n % 2
        return sum(A001190(i+1)*A001190(n-1-i) for i in range(m-1)) + (1 - n % 2)*A001190(m)*(A001190(m)+1)//2 # Chai Wah Wu, Jan 14 2022

Formula

G.f. satisfies A(x) = x + (1/2)*(A(x)^2 + A(x^2)) [de Bruijn and Klarner].
G.f. also satisfies A(x) = 1 - sqrt(1 - 2*x - A(x^2)). - Michael Somos, Sep 06 2003
a(2n-1) = a(1)a(2n-2) + a(2)a(2n-3) + ... + a(n-1)a(n), a(2n) = a(1)a(2n-1) + a(2)a(2n-2) + ... + a(n-1)a(n+1) + a(n)(a(n)+1)/2.
Given g.f. A(x), then B(x) = -1 + A(x) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = (u^2 + v)^2 + 2*(v^2 + w). - Michael Somos, Oct 22 2006
The radius of convergence of the g.f. is A240943 = 1/A086317 ~ 0.4026975... - Jean-François Alcover, Jul 28 2014, after Steven R. Finch.
a(n) ~ A086318 * A086317^(n-1) / n^(3/2). - Vaclav Kotesovec, Apr 19 2016

A000672 Number of 3-valent trees (= boron trees or binary trees) with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 37, 66, 135, 265, 552, 1132, 2410, 5098, 11020, 23846, 52233, 114796, 254371, 565734, 1265579, 2841632, 6408674, 14502229, 32935002, 75021750, 171404424, 392658842, 901842517, 2076217086, 4790669518, 11077270335
Offset: 0

Views

Author

Keywords

Comments

This can be described in 2 ways: (a) Trees with n nodes of valency <= 3, for n = 0,1,2,3,... (b) Trees with t = 2n+2 nodes of valency either 1 or 3 (implying that there are n nodes of valency 3 - the boron atoms - and n+2 nodes of valency 1 - the hydrogen atoms), for t = 2,4,6,8,...
Essentially the same sequences arises from studying the number of unrooted, unlabeled binary tree topologies with n leaves (see A129860). - Steven Kelk, Jul 22 2016

Examples

			The 4 trees with 6 nodes are:
._._._._._. . ._._._._. . ._._._._. . ._._._.
. . . . . . . . | . . . . . . | . . . . | |
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 11*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • P. J. Cameron, Oligomorphic Permutation Groups, Cambridge; see Fig. 2 p. 35.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, page 33. Note that at least the first two editions give an incorrect version of this sequence.
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k = 3 of A144528.
Cf. A001190(n+1) (rooted trees).

Programs

  • Mathematica
    (* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k, 1, (n-1)/2}]; c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k], {k, 1, n/2-1}]; c[0] = 0; c[1] = 1; b[x_] := If[IntegerQ[x], c[x+1], 0]; a[0] = a[1] = a[2] = 1; a[n_] := b[n/2] - (1/3)*(b[(n-1)/3]-1)*b[(n-1)/3]*(b[(n-1)/3] + 1) + 2*b[n] - b[n+1] - Sum[(1/2)*(b[i]-1)*b[i]*b[-2*i + n - 1], {i, 1, (n-2)/2}] + Sum[b[i]*Sum[b[j]*b[n-i-j-1], {j, i, (1/2)*(n-i-1)}], {i, 1, (n-1)/3}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 19 2015 *)
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S3[T,h-1,z]z - S3[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    n = 60; c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k,1,(n-1)/2}];
    c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k],
      {k,1,n/2-1}]; c[0] = 0; c[1] = 1; (* as in program 1 above *)
    gf[x_] := Sum[c[i+1] x^i, {i,0,n}]; (* g.f. for A001190(n+1) *)
    ci[x_] := SymmetricGroupIndex[3, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 +
    x ci[x], {x,0,n}]], x] (* Robert A. Russell, Jan 17 2023 *)

Formula

Rains and Sloane give a g.f.
a(0)=a(1)=a(2)=1, a(n) = 2*b(n+1) - b(n+2) + b((n+1)/2) - 2*C(1+b(n/3), 3) - Sum_{i=1..[(n-1)/2]} C(b(i), 2)*b(n-2*i) + Sum_{i=1..[n/3]} b(i) Sum_{j=i..[(n-i)/2]} b(j)*b(n-i-j), where b(x) = A001190(x+1) if x is an integer, otherwise 0 (Cyvin et al.) [Index of A001190 shifted by R. J. Mathar, Mar 08 2010]
a(n) = A000673(n) + A000675(n).
a(n) ~ c * d^n / n^(5/2), where d = A086317 = 2.4832535361726368585622885181... and c = 1.2551088797592580080398489829149157375... . - Vaclav Kotesovec, Apr 19 2016
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S3,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^3 + 3*B(x) B(x^2) + 2*B(x^3)) / 6, where B(x) = 1 + x * cycle_index(S2,B(x)) = 1 + x * (B(x)^2 + B(x^2)) / 2 is the generating function for A001190(n+1). - Robert A. Russell, Jan 17 2023

A003214 Number of binary forests with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 37, 76, 152, 320, 672, 1454, 3154, 6959, 15439, 34608, 77988, 176985, 403510, 924683, 2127335, 4913452, 11385955, 26468231, 61700232, 144206269, 337837221, 793213550, 1866181155, 4398867672, 10387045476, 24567374217, 58196129468, 138056734916
Offset: 0

Views

Author

Keywords

Comments

From Piet Hut, Nov 07 2003: "Number of ways to place n stars in stable hierarchical multiple star systems (where each stable multiple is a binary tree: around its center of mass two multiple star systems revolve, each of which can be a singleton or a nontrivial multiple star system).
"For example, a(1) = 1 : *; a(2) = 2 : (**), * *; a(3) = 3 : ((**)*), (**) *, * * *; a(4) = 6 : (((**)*)*), ((**)(**)), ((**)*) *, (**) (**), (**) * *, * * * * ."

References

  • L. F. Meyers, Corrections and additions to Tree Representations in Linguistics. Report 3, 1966, p. 138. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
  • L. F. Meyers and W. S.-Y. Wang, Tree Representations in Linguistics. Report 3, 1963, pp. 107-108. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001190.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(b(n/2)))+add(b(i)*b(n-i), i=1..n/2))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d),
          d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    terms = 35; (* G = G001190 *) G[] = 0; Do[G[x] = x + (1/2)*(G[x]^2 + G[x^2]) + O[x]^terms // Normal, terms]; A[x_] = Exp[Sum[G[x^i]/i, {i, 1, terms}]] + O[x]^terms; CoefficientList[A[x], x](* Jean-François Alcover, Nov 18 2011, updated Jan 12 2018 *)
    (* b = A001190 *) b[n_] := b[n] = If[OddQ[n], Sum[b[k] b[n-k], {k, 1, (n-1)/2}], Sum[b[k] b[n-k], {k, 1, n/2 - 1}] + (1/2) b[n/2] (1+b[n/2])]; b[0] = 0; b[1] = 1;
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[d p[d], {d, Divisors[j]}] b[n-j], {j, 1, n}]/n]; b];
    a[n_] := etr[b][n]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Mar 14 2016 *)

Formula

Euler transform of A001190. - Michael Somos, Nov 10 2003
G.f.: exp( Sum_{i>=1} G001190(x^i)/i ), where G001190 = g.f. for A001190.
a(n) ~ c * d^n / n^(3/2), where d = A086317 = 2.4832535361726368585622885181... and c = 0.9874010699028009804... . - Vaclav Kotesovec, Apr 19 2016

A086318 Decimal expansion of asymptotic constant eta for counts of weakly binary trees.

Original entry on oeis.org

7, 9, 1, 6, 0, 3, 1, 8, 3, 5, 7, 7, 5, 1, 1, 8, 0, 7, 8, 2, 3, 6, 2, 8, 4, 5, 5, 7, 2, 3, 2, 6, 8, 2, 2, 4, 0, 7, 1, 7, 4, 2, 4, 1, 8, 0, 9, 0, 7, 8, 9, 4, 6, 7, 3, 1, 2, 3, 0, 7, 8, 3, 0, 9, 9, 2, 2, 9, 0, 4, 4, 1, 5, 0, 3, 8, 9, 3, 2, 9, 2, 5, 5, 4, 4, 6, 6, 7, 9, 0, 8, 6, 8, 4, 0, 4, 6, 3, 0, 3, 8, 3
Offset: 0

Views

Author

Eric W. Weisstein, Jul 15 2003

Keywords

Examples

			0.791603183577511807823628455723268224071742418090789...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.6, p. 297.

Crossrefs

Programs

  • Mathematica
    digits = 102; c[0] = 2; c[n_] := c[n] = c[n - 1]^2 + 2; eta[n_Integer] := eta[n] = 1/2 * Sqrt[c[n]^2^(-n)/Pi] * Sqrt[3 + Sum[1/Product[c[j], {j, 1, k}], {k, 1, n}]]; eta[5]; eta[n = 10]; While[RealDigits[eta[n], 10, digits] != RealDigits[eta[n - 5], 10, digits], n = n + 5]; RealDigits[eta[n], 10, digits] // First (* Jean-François Alcover, May 27 2014 *)

Formula

Equals lim_{n->oo} A001190(n)*n^(3/2)/A086317^(n-1). - Vaclav Kotesovec, Apr 19 2016

A240943 Decimal expansion of the radius of convergence of Wedderburn-Etherington numbers g.f.

Original entry on oeis.org

4, 0, 2, 6, 9, 7, 5, 0, 3, 6, 7, 1, 4, 4, 1, 2, 9, 0, 9, 6, 9, 0, 4, 5, 3, 4, 8, 6, 5, 1, 0, 8, 3, 8, 0, 3, 4, 1, 7, 5, 5, 6, 7, 2, 1, 6, 2, 4, 9, 7, 2, 6, 5, 9, 2, 9, 1, 0, 5, 3, 4, 6, 4, 6, 0, 7, 6, 4, 2, 7, 2, 8, 9, 6, 6, 5, 2, 4, 2, 5, 8, 4, 1, 6, 4, 1, 6, 0, 9, 6, 0, 2, 6, 2, 1, 7, 2, 0, 5, 9, 5, 2
Offset: 0

Views

Author

Jean-François Alcover, Aug 04 2014

Keywords

Examples

			0.4026975036714412909690453486510838034175567216249726592910534646...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, p. 297.

Crossrefs

Programs

  • Mathematica
    digits = 102; n0 = 50; dn = 50; Clear[rho]; rho[n_] := rho[n] = (Clear[c]; c[0] = 0; y[z_] = Sum[c[k]*z^k, {k, 0, n}]; eq[0] = Rest[ Thread[CoefficientList[(-2*z + 2*y[z] - y[z]^2 - y[z^2])/2, z] == 0]]; s[1] = First[Solve[First[eq[0]], c[1]]]; Do[eq[k-1] = Rest[eq[k-2]] /. s[k-1]; s[k] = First[Solve[First[eq[k-1]], c[k]]], {k, 2, n}]; z /. FindRoot[ 2*z + y[z^2] == 1 /. Flatten[Table[s[k], {k, 1, n}]], {z, 1/2}, WorkingPrecision -> digits+10]); rho[n0]; rho[n = n0 + dn]; While[RealDigits[rho[n], 10, digits] != RealDigits[rho[n - dn], 10, digits], Print["n = ", n]; n = n + dn]; RealDigits[rho[n], 10, digits] // First
    (* or, after A086317: *) Clear[c, xi]; c[0] = 2; c[n_] := c[n] = c[n-1]^2 + 2; xi[n_Integer] := xi[n] = c[n]^(2^-n); xi[5]; xi[n = 10]; While[RealDigits[xi[n], 10, digits] != RealDigits[xi[n-5], 10, digits], n = n+5]; RealDigits[1/xi[n], 10, digits] // First (* Jean-François Alcover, Aug 04 2014 *)

Formula

A244398 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 2.

Original entry on oeis.org

1, 2, 5, 10, 22, 45, 97, 206, 450, 982, 2178, 4849, 10904, 24630, 56010, 127911, 293546, 676156, 1563371, 3626148, 8436378, 19680276, 46026617, 107890608, 253450710, 596572386, 1406818758, 3323236237, 7862958390, 18632325318, 44214569099, 105061603968
Offset: 3

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 27 2014

Keywords

Crossrefs

Column k=2 of A244372.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> b(n-1$2, 2$2) -`if`(n=0, 0, 1):
    seq(a(n), n=3..40);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]] // FullSimplify]; a[n_] := b[n-1, n-1, 2, 2] - If[n == 0, 0, 1]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) = A001190(n+1)-1 = A036656(n+1)-1.
a(n) ~ c * d^n / n^(3/2), where d = 2.4832535361726368... = A086317 and c = 0.7916031835775118... = A086318. - Vaclav Kotesovec, Jun 27 2014

A380256 Number of rooted binary normal unlabeled galled trees with n leaves and exactly 1 gall.

Original entry on oeis.org

0, 0, 0, 1, 4, 15, 48, 148, 435, 1250, 3512, 9726, 26587, 71975, 193200, 515051, 1364896, 3598794, 9447028, 24704031, 64382465, 167288460, 433512724, 1120719444, 2891035926, 7443225226, 19129208972, 49082742607, 125752279124, 321744111359, 822165920924, 2098475215237
Offset: 0

Views

Author

Noah A Rosenberg, Jan 17 2025

Keywords

Comments

The asymptotic growth of a(n) follows (0.3910...)(2.4833...^n)n^(1/2), where 2.4833... is the constant represented by A086317.

Examples

			For n=3 leaves, there is a unique rooted binary unlabeled tree with a root gall from which 3 leaves are descended; hence a(3)=1. This galled tree has the shape:
     .
    / \
   ._._.
  /  |  \
		

Crossrefs

Cf. A001190 (rooted binary unlabeled galled trees with n leaves and 0 galls), A380211 (rooted binary unlabeled galled trees with n leaves and any number of galls).
Radius of convergence of the generating function follows the contstant A240943 (exponential growth according to A086317).

Formula

G.f.: 1/(1-U(x)) - 1/(1-U(x))^2 + U(x)/(2*(1-U(x))^3) + U(x)/(2*(1-U(x))*(1-U(x^2))), where U(x) is the g.f. of A001190 (eq. 48 of Agranat-Tamir et al., Bull. Math. Biol. 86 (2024), 45).

A380306 Irregular triangle read by rows: T(n,k) is the number of rooted binary normal unlabeled galled trees with n leaves and exactly k galls, 0 <= k <= floor((n-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 3, 15, 2, 6, 48, 18, 11, 148, 107, 6, 23, 435, 528, 78, 46, 1250, 2295, 661, 19, 98, 3512, 9185, 4356, 346, 207, 9726, 34503, 24564, 3776, 67, 451, 26587, 123612, 123825, 31289, 1543, 983, 71975, 426218, 574149, 216501, 20720, 246
Offset: 1

Views

Author

Noah A Rosenberg, Jan 19 2025

Keywords

Comments

For fixed k, the asymptotic growth of T(n,k) with n follows (2^(2*k-1) / ((2*k)! * g^(4*k-1) * sqrt(Pi))) * n^(2*k-3/2) * r^n, where r is the constant 2.4833... represented by A086317 and g is a constant 1.1300... (Theorem 10 of Agranat-Tamir et al., Leibniz International Proceedings in Informatics (LIPIcs) 302 (2024), 27).

Examples

			Triangle begins:
     1;
     1;
     1,      1;
     2,      4;
     3,     15,       2;
     6,     48,      18;
    11,    148,     107,       6;
    23,    435,     528,      78;
    46,   1250,    2295,     661,      19;
    98,   3512,    9185,    4356,     346;
   207,   9726,   34503,   24564,    3776,     67;
   451,  26587,  123612,  123825,   31289,   1543;
   983,  71975,  426218,  574149,  216501,  20720,  246;
  2179, 193200, 1425011, 2493129. 1316450, 206644, 6942;
		

Crossrefs

First column (k=0) is A001190.
Second column (k=1) is A380256.
Row sums give A380211.

Formula

G.f. satisfies A(x,y) = x + y + (1/2)*A(x,y)^2 + (1/2)*A(x^2,y^2) - y/(1-A(x,y)) + y*A(x,y)/(2*(1-A(x,y))^2) + y*A(x,y)/(2*(1-A(x^2,y^2))) (eq. 56 of Agranat-Tamir et al., Bull. Math. Biol. 86 (2024), 45).
Showing 1-9 of 9 results.