cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A174566 Partial sums of A003214.

Original entry on oeis.org

1, 2, 4, 7, 13, 23, 43, 80, 156, 308, 628, 1300, 2754, 5908, 12867, 28306, 62914, 140902, 317887, 721397, 1646080, 3773415, 8686867, 20072822, 46541053, 108241285, 252447554, 590284775, 1383498325, 3249679480, 7648547152
Offset: 0

Views

Author

Jonathan Vos Post, Mar 22 2010

Keywords

Comments

Partial sums of number of binary forests with n nodes. The subsequence of primes in this partial sum begins: 2, 7, 13, 23, 43, 317887, 721397, 238855831229, 154308201825571245947273 = a(65).

Examples

			a(34) = 1 + 1 + 2 + 3 + 6 + 10 + 20 + 37 + 76 + 152 + 320 + 672 + 1454 + 3154 + 6959 + 15439 + 34608 + 77988 + 176985 + 403510 + 924683 + 2127335 + 4913452 + 11385955 + 26468231 + 61700232 + 144206269 + 337837221 + 793213550 + 1866181155 + 4398867672 + 10387045476 + 24567374217 + 58196129468 + 138056734916 = 238855831229 is prime,
		

Crossrefs

Cf. A003214.

Formula

a(n) = SUM[i=0..n] A003214(i).

A001190 Wedderburn-Etherington numbers: unlabeled binary rooted trees (every node has outdegree 0 or 2) with n endpoints (and 2n-1 nodes in all).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, 293547, 676157, 1563372, 3626149, 8436379, 19680277, 46026618, 107890609, 253450711, 596572387, 1406818759, 3323236238, 7862958391, 18632325319, 44214569100, 105061603969
Offset: 0

Views

Author

Keywords

Comments

Also number of n-node binary rooted trees (every node has outdegree <= 2) where root has degree 0 (only for n=1) or 1.
a(n+1) is the number of rooted trees with n nodes where the outdegree of every node is <= 2, see example. These trees are obtained by removing the root of the trees in the comment above. - Joerg Arndt, Jun 29 2014
Number of interpretations of x^n (or number of ways to insert parentheses) when multiplication is commutative but not associative. E.g., a(4) = 2: x(x*x^2) and x^2*x^2. a(5) = 3: (x*x^2)x^2, x(x*x*x^2) and x(x^2*x^2). [If multiplication is non-commutative then the answer is A000108(n-1). - Jianing Song, Apr 29 2022]
Number of ways to place n stars in a single bound stable hierarchical multiple star system; i.e., taking only the configurations from A003214 where all stars are included in single outer parentheses. - Piet Hut, Nov 07 2003
Number of colorations of Kn (complete graph of order n) with n-1 colors such that no triangle is three-colored. Two edge-colorations C1 and C2 of G are isomorphic iff exists an automorphism f (isomorphism between G an G) such that: f sends same-colored edges of C1 on same-colored edges of C2 and f^(-1) sends same-colored edges of C2 on same-colored edges of C1. - Abraham Gutiérrez, Nov 12 2012
For n>1, a(n) is the number of (not necessarily distinct) unordered pairs of free unlabeled trees having a total of n nodes. See the first entry in formula section. - Geoffrey Critzer, Nov 09 2014
Named after the English mathematician Ivor Etherington (1908-1994) and the Scottish mathematician Joseph Wedderburn (1882-1948). - Amiram Eldar, May 29 2021

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6+1) = 11 rooted trees with 6 nodes as described in the comment are:
:           level sequence       outdegrees (dots for zeros)
:     1:  [ 0 1 2 3 4 5 ]    [ 1 1 1 1 1 . ]
:  O--o--o--o--o--o
:
:     2:  [ 0 1 2 3 4 4 ]    [ 1 1 1 2 . . ]
:  O--o--o--o--o
:           .--o
:
:     3:  [ 0 1 2 3 4 3 ]    [ 1 1 2 1 . . ]
:  O--o--o--o--o
:        .--o
:
:     4:  [ 0 1 2 3 4 2 ]    [ 1 2 1 1 . . ]
:  O--o--o--o--o
:     .--o
:
:     5:  [ 0 1 2 3 4 1 ]    [ 2 1 1 1 . . ]
:  O--o--o--o--o
:  .--o
:
:     6:  [ 0 1 2 3 3 2 ]    [ 1 2 2 . . . ]
:  O--o--o--o
:        .--o
:     .--o
:
:     7:  [ 0 1 2 3 3 1 ]    [ 2 1 2 . . . ]
:  O--o--o--o
:        .--o
:  .--o
:
:     8:  [ 0 1 2 3 2 3 ]    [ 1 2 1 . 1 . ]
:  O--o--o--o
:     .--o--o
:
:     9:  [ 0 1 2 3 2 1 ]    [ 2 2 1 . . . ]
:  O--o--o--o
:     .--o
:  .--o
:
:    10:  [ 0 1 2 3 1 2 ]    [ 2 1 1 . 1 . ]
:  O--o--o--o
:  .--o--o
:
:    11:  [ 0 1 2 2 1 2 ]    [ 2 2 . . 1 . ]
:  O--o--o
:     .--o
:  .--o--o
:
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 55.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
  • A. Gutiérrez-Sánchez, Shen-colored tournaments, thesis, UNAM, 2012.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.52.
  • Richard P. Stanley, Catalan Numbers, Cambridge, 2015, p. 133.

Crossrefs

Column k=2 of A292085 and of A299038.
Column k=1 of A319539 and of A319541.

Programs

  • Maple
    A001190 := proc(n) option remember; local s,k; if n<=1 then RETURN(n); elif n <=3 then RETURN(1); else s := 0; if n mod 2 = 0 then s := A001190(n/2)*(A001190(n/2)+1)/2; for k from 1 to n/2-1 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); else for k from 1 to (n-1)/2 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); fi; fi; end;
    N := 40: G001190 := add(A001190(n)*x^n,n=0..N);
    spec := [S,{S=Union(Z,Prod(Z,Set(S,card=2)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    # alternative Maple program:
    a:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(a(n/2)))+add(a(i)*a(n-i), i=1..n/2))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    terms = 35; A[] = 0; Do[A[x] = x + (1/2)*(A[x]^2 + A[x^2]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 22 2011, updated Jan 10 2018 *)
    a[n_?OddQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, (n-1)/2}]; a[n_?EvenQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, n/2-1}] + (1/2)*a[n/2]*(1+a[n/2]); a[0]=0; a[1]=1; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jun 13 2012, after recurrence formula *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Nest[ 1 - Sqrt[1 - 2 x - (# /. x -> x^2)] &, 0, BitLength @ n], {x, 0, n}]]; (* Michael Somos, Apr 25 2013 *)
  • PARI
    {a(n) = local(A, m); if( n<0, 0, m=1; A = O(x); while( m<=n, m*=2; A = 1 - sqrt(1 - 2*x - subst(A, x, x^2))); polcoeff(A, n))}; /* Michael Somos, Sep 06 2003 */
    
  • PARI
    {a(n) = local(A); if( n<4, n>0, A = vector(n, i, 1); for( i=4, n, A[i] = sum( j=1, (i-1)\2, A[j] * A[i-j]) + if( i%2, 0, A[i/2] * (A[i/2] + 1)/2)); A[n])}; /* Michael Somos, Mar 25 2006 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A001190(n):
        if n <= 1: return n
        m = n//2 + n % 2
        return sum(A001190(i+1)*A001190(n-1-i) for i in range(m-1)) + (1 - n % 2)*A001190(m)*(A001190(m)+1)//2 # Chai Wah Wu, Jan 14 2022

Formula

G.f. satisfies A(x) = x + (1/2)*(A(x)^2 + A(x^2)) [de Bruijn and Klarner].
G.f. also satisfies A(x) = 1 - sqrt(1 - 2*x - A(x^2)). - Michael Somos, Sep 06 2003
a(2n-1) = a(1)a(2n-2) + a(2)a(2n-3) + ... + a(n-1)a(n), a(2n) = a(1)a(2n-1) + a(2)a(2n-2) + ... + a(n-1)a(n+1) + a(n)(a(n)+1)/2.
Given g.f. A(x), then B(x) = -1 + A(x) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = (u^2 + v)^2 + 2*(v^2 + w). - Michael Somos, Oct 22 2006
The radius of convergence of the g.f. is A240943 = 1/A086317 ~ 0.4026975... - Jean-François Alcover, Jul 28 2014, after Steven R. Finch.
a(n) ~ A086318 * A086317^(n-1) / n^(3/2). - Vaclav Kotesovec, Apr 19 2016

A086317 Decimal expansion of asymptotic constant xi for counts of weakly binary trees.

Original entry on oeis.org

2, 4, 8, 3, 2, 5, 3, 5, 3, 6, 1, 7, 2, 6, 3, 6, 8, 5, 8, 5, 6, 2, 2, 8, 8, 5, 1, 8, 1, 7, 8, 2, 2, 1, 2, 8, 9, 1, 8, 8, 6, 9, 7, 3, 4, 0, 8, 1, 4, 3, 6, 4, 5, 8, 5, 9, 2, 0, 2, 5, 9, 6, 9, 7, 3, 0, 6, 7, 4, 2, 5, 4, 0, 8, 8, 5, 8, 0, 9, 8, 3, 9, 0, 6, 4, 7, 6, 4, 0, 1, 6, 9, 1, 6, 7, 2, 1, 8, 2, 7, 4, 7
Offset: 1

Views

Author

Eric W. Weisstein, Jul 15 2003

Keywords

Examples

			2.48325353617263685856228851817822128918869734...
		

Crossrefs

Programs

  • Mathematica
    digits = 102; c[0] = 2; c[n_] := c[n] = c[n - 1]^2 + 2; xi[n_Integer] := xi[n] = c[n]^(2^-n); xi[5]; xi[n = 10]; While[RealDigits[xi[n], 10, digits] != RealDigits[xi[n - 5], 10, digits], n = n + 5]; RealDigits[xi[n], 10, digits] // First (* Jean-François Alcover, May 27 2014 *)

Formula

Equals 1/A240943.
Equals lim_{n->infinity} A001190(n)^(1/n). - Vaclav Kotesovec, Jul 28 2014

Extensions

Typos corrected by Jean-François Alcover, May 27 2014

A088325 Piet Hut's "coat-hanger" sequence: unlabeled forests of rooted trees with n edges, where there can be any number of components, the outdegree of each node is <= 2 and the symmetric group acts on the components.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 34, 71, 153, 332, 730, 1617, 3620, 8148, 18473, 42097, 96420, 221770, 512133, 1186712, 2758707, 6431395, 15033320, 35224825, 82720273, 194655030, 458931973, 1083926784, 2564305754, 6075896220, 14417163975, 34256236039, 81499535281, 194130771581
Offset: 0

Views

Author

N. J. A. Sloane, Nov 06 2003

Keywords

Comments

The coat-hangers hang on a single rod and each coat-hanger may have 0, 1 or 2 coat-hangers hanging from it. There are n coat-hangers.
Arises when studying number of different configurations possible in a multiple star system.

Examples

			The eight possibilities with 4 edges are:
.||||..|||..|.|..||..||...|....|...|.
.......|.../.\...|...||../.\...|...|.
.................|.......|..../.\..|.
...................................|.
		

Crossrefs

Cf. A001190, A003214. Row sums of A088326.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(b(n/2)))+add(b(i)*b(n-i), i=1..n/2))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d+1),
          d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    b[n_] := b[n] = If[n<2, n, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2]]] + Sum[b[i]*b[n-i], {i, 1, n/2}]];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)

Formula

G.f.: exp(Sum_{k>=1} B(x^k)/k), where B(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + ... = G001190(x)/x - 1 and G001190 is the g.f. for the Wedderburn-Etherington numbers A001190. - N. J. A. Sloane.
G.f.: 1/Product_{k>0} (1-x^k)^A001190(k+1). - Vladeta Jovovic, May 29 2005
Showing 1-4 of 4 results.