cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A339650 Triangle read by rows: T(n,k) is the number of trees with n leaves of exactly k colors and all non-leaf nodes having degree 3.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 6, 3, 0, 1, 10, 30, 36, 15, 0, 2, 27, 140, 310, 300, 105, 0, 2, 74, 663, 2376, 3990, 3150, 945, 0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395, 0, 6, 710, 15642, 123508, 462735, 925890, 1018710, 582120, 135135
Offset: 0

Views

Author

Andrew Howroyd, Dec 14 2020

Keywords

Comments

See table 4.2 in the Johnson reference.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   2,    1;
  0, 1,   4,    6,     3;
  0, 1,  10,   30,    36,    15;
  0, 2,  27,  140,   310,   300,   105;
  0, 2,  74,  663,  2376,  3990,  3150,   945;
  0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395;
  ...
		

Crossrefs

Columns k=1..4 are A129860, A220829, A220830, A220831.
Main diagonal is A001147(n-2) for n >= 2.
Row sums are A339651.
Cf. A319541 (rooted), A339649, A339780.

Programs

  • PARI
    \\ here U(n,k) is column k of A339649 as a vector.
    R(n, k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    U(n, k)={my(g=x*Ser(R(n, k))); Vec(1 + g + (subst(g + O(x*x^(n\3)), x, x^3) - g^3)/3)}
    M(n, m=n)={my(v=vector(m+1, k, U(n, k-1)~)); Mat(vector(m+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A339649(n,i).

A220826 Number of unrooted binary leaf-multi-labeled trees with n leaves on the label set [2].

Original entry on oeis.org

2, 3, 4, 6, 12, 31, 78, 234, 722, 2376, 8046, 28263, 101226, 370389, 1375728, 5182107, 19743204, 75994993, 295110996, 1155128397, 4553360558, 18063221619, 72069527418, 289053637621, 1164871141254, 4714973350560, 19161577759814, 78162897838290, 319940064689142
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2012

Keywords

Crossrefs

Column 2 of A339649.

Programs

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 14 2020

A220830 Number of unrooted binary leaf-multi-labeled trees with n leaves on the label set [3], with each label used at least once.

Original entry on oeis.org

0, 0, 1, 6, 30, 140, 663, 3186, 15642, 78441, 400842, 2084698, 11009358, 58955139, 319619706, 1752122667, 9700923252, 54194387085, 305216395077, 1731579241287, 9889280682948, 56822058078669, 328300135291659, 1906449141877331, 11122447670117451, 65168427936552522
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2012

Keywords

Crossrefs

Column 3 of A339650.

Formula

a(n) = A220827(n) - 3*A220826(n) + 3*A129860(n). - Andrew Howroyd, Dec 14 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 14 2020
Showing 1-3 of 3 results.