cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133799 a(2) = 1, a(3)=3; for n >= 4, a(n) = (n-2)!*Stirling_2(n,n-1)/2 = n!/4.

Original entry on oeis.org

1, 3, 6, 30, 180, 1260, 10080, 90720, 907200, 9979200, 119750400, 1556755200, 21794572800, 326918592000, 5230697472000, 88921857024000, 1600593426432000, 30411275102208000, 608225502044160000, 12772735542927360000, 281000181944401920000
Offset: 2

Views

Author

N. J. A. Sloane, Jan 17 2008

Keywords

Comments

a(n-1), n>=5, gives the number of necklaces with n beads (C_n symmetry) with color signature determined from the partition 2^2,1^(n-4) of n. Only n-2 distinct colors, say c[1], c[2], ..., c[n-2] are used, and the representative necklaces have the color c[1] and c[2] each twice. E.g., n=5, partition 2,2,1, color signature (take the parts as exponents) c[1]c[1]c[2]c[2]c[3], with the a(4)=6 necklaces (write j for color c[j]) 11223, 11232, 11322, 12213, 12123 and 12132, all taken cyclically. See A212359 for the numbers for general partitions or color signatures. - Wolfdieter Lang, Jun 27 2012

Crossrefs

A diagonal of triangle A133800.
Cf. A212359.

Programs

  • Magma
    [n le 3 select 2*n-3 else Factorial(n)/4: n in [2..30]]; // G. C. Greubel, Sep 28 2024
    
  • Mathematica
    Join[{1,3},Range[4,30]!/4] (* Harvey P. Dale, Aug 13 2013 *)
  • PARI
    concat([1,3],vector(66,n,(n+3)!/4)) \\ Joerg Arndt, Aug 14 2013
    
  • SageMath
    def A133799(n): return (factorial(n) +2*int(n==2) +6*int(n==3))//4
    [A133799(n) for n in range(2,31)] # G. C. Greubel, Sep 28 2024

Formula

a(n) = numerator(n!/(2*(n! - 2))) for n > 2. - Stefano Spezia, Dec 06 2023

Extensions

Corrected parameters in definition. - Geoffrey Critzer, Apr 26 2009

A032262 Number of ways to partition n labeled elements into pie slices allowing the pie to be turned over.

Original entry on oeis.org

1, 1, 2, 5, 17, 83, 557, 4715, 47357, 545963, 7087517, 102248075, 1622633597, 28091569643, 526858352477, 10641342978635, 230283190994237, 5315654682014123, 130370767029201437, 3385534663256976395
Offset: 0

Views

Author

Keywords

Examples

			For n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123 .1234
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4
.(3)....(6)...(3)..(4)...(1) Total a(4) = 17
		

Crossrefs

Row sums of triangle A133800.

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := 2^(n-2) + HurwitzLerchPhi[1/2, 1-n, 0]/2;
    Array[a, 20, 0] (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    seq(n)={my(p=exp(x + O(x*x^n))-1); Vec(1 + serlaplace(p + p^2/2 - log(1-p))/2)} \\ Andrew Howroyd, Sep 12 2018

Formula

a(n) = 2^(n-2) + A000670(n-1) for n >= 2. - N. J. A. Sloane, Jan 17 2008
a(n) = 2^(n-1) + Sum_{k >= 3} Stirling_2(n,k)*(k-1)!/2 for n >= 1. - N. J. A. Sloane, Jan 17 2008
"DIJ" (bracelet, indistinct, labeled) transform of 1, 1, 1, 1, ... (see Bower link).
E.g.f.: 1 + (g(x) + g(x)^2/2 - log(1-g(x)))/2 where g(x) = exp(x) - 1. - Andrew Howroyd, Sep 12 2018

Extensions

Edited by N. J. A. Sloane, Jan 17 2008
a(0)=1 prepended by Andrew Howroyd, Sep 12 2018
Showing 1-2 of 2 results.