A162990
Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).
Original entry on oeis.org
4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1
The first few rows of the triangle are:
[4]
[36, 9]
[576, 144, 64]
[14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
MN(z;n=1) = 4
MN(z;n=2) = 36 + 9*z
MN(z;n=3) = 576 + 144*z + 64*z^2
MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
- Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.
A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
-
a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
-
Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)
A094310
Triangle read by rows: T(n,k), the k-th term of the n-th row, is the product of all numbers from 1 to n except k: T(n,k) = n!/k.
Original entry on oeis.org
1, 2, 1, 6, 3, 2, 24, 12, 8, 6, 120, 60, 40, 30, 24, 720, 360, 240, 180, 144, 120, 5040, 2520, 1680, 1260, 1008, 840, 720, 40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040, 362880, 181440, 120960, 90720, 72576, 60480, 51840, 45360, 40320, 3628800, 1814400, 1209600, 907200, 725760, 604800, 518400, 453600, 403200, 362880
Offset: 1
Triangle begins as:
1;
2, 1;
6, 3, 2;
24, 12, 8, 6;
120, 60, 40, 30, 24;
720, 360, 240, 180, 144, 120;
5040, 2520, 1680, 1260, 1008, 840, 720;
40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040;
...
T(4,2) counts the 12 permutations of [4] with elements 1 and 2 in the same cycle, namely, (1 2)(3 4), (1 2)(3)(4), (1 2 3)(4), (1 3 2)(4), (1 2 4)(3), (1 4 2)(3), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
-
seq(seq(n!/k, k=1..n), n=1..10);
-
Table[n!/k, {n,10}, {k,n}]//Flatten
Table[n!/Range[n], {n,10}]//Flatten (* Harvey P. Dale, Mar 12 2016 *)
A133800
Triangle read by rows in which row n gives number of ways to partition n labeled elements into k pie slices allowing the pie to be turned over (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 6, 3, 1, 15, 25, 30, 12, 1, 31, 90, 195, 180, 60, 1, 63, 301, 1050, 1680, 1260, 360, 1, 127, 966, 5103, 12600, 15960, 10080, 2520, 1, 255, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 1, 511, 9330, 102315, 510300, 1369620
Offset: 1
Triangle begins:
1,
1, 1,
1, 3, 1,
1, 7, 6, 3,
1, 15, 25, 30, 12,
1, 31, 90, 195, 180, 60,
1, 63, 301, 1050, 1680, 1260, 360.
...
For row n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4 .. (1234)
k=4 .. k=3 ..k=2 . k=2 . k=1
(3)....(6)...(3)..(4)... (1)
-
A001710 := proc(n) if n < 2 then 1; else n!/2 ; fi ; end: A008277 := proc(n,k) combinat[stirling2](n,k) ; end: A133800 := proc(n,k) A008277(n,k)*A001710(k-1) ; end: for n from 1 to 10 do for k from 1 to n do printf("%d, ",A133800(n,k)) ; od: od: # R. J. Mathar, Jan 18 2008
-
A001710[n_] := If[n<2, 1, n!/2]; A008277[n_, k_] := StirlingS2[n, k]; A133800[n_, k_] := A008277[n, k]*A001710[k-1]; Table[A133800[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014, after R. J. Mathar *)
(* A (n >= 0, k >= 0)-based version: *)
A133800[n_, k_] := k! StirlingS2[n+1, k+1] / If[k>1, 2, 1];
Table[A133800[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 19 2017 *)
A129923
a(n) = (n+5)! / 5.
Original entry on oeis.org
24, 144, 1008, 8064, 72576, 725760, 7983360, 95800320, 1245404160, 17435658240, 261534873600, 4184557977600, 71137485619200, 1280474741145600, 24329020081766400, 486580401635328000, 10218188434341888000
Offset: 0
-
[Factorial(n+5)/5: n in [0..30]]; // G. C. Greubel, Sep 28 2024
-
Table[(n+5)!/5, {n, 0, 5 + 25}]
Range[5,30]!/5 (* Harvey P. Dale, Mar 29 2023 *)
-
a(n)=(n+5)!/5;
-
[factorial(n+5)//5 for n in range(31)] # G. C. Greubel, Sep 28 2024
A249619
Triangle T(m,n) = number of permutations of a multiset with m elements and signature corresponding to n-th integer partition (A194602).
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 24, 12, 4, 6, 1, 120, 60, 20, 30, 5, 10, 1, 720, 360, 120, 180, 30, 60, 6, 90, 15, 20, 1, 5040, 2520, 840, 1260, 210, 420, 42, 630, 105, 140, 7, 210, 21, 35, 1, 40320, 20160, 6720, 10080, 1680, 3360, 336, 5040, 840, 1120, 56
Offset: 0
Triangle begins:
n 0 1 2 3 4 5 6 7 8 9 10
m
0 1
1 1
2 2 1
3 6 3 1
4 24 12 4 6 1
5 120 60 20 30 5 10 1
6 720 360 120 180 30 60 6 90 15 20 1
A357599
Expansion of e.g.f. sinh(2 * log(1+x)) / 2.
Original entry on oeis.org
0, 1, -1, 6, -30, 180, -1260, 10080, -90720, 907200, -9979200, 119750400, -1556755200, 21794572800, -326918592000, 5230697472000, -88921857024000, 1600593426432000, -30411275102208000, 608225502044160000, -12772735542927360000, 281000181944401920000
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh(2*log(1+x))/2)))
-
a(n) = sum(k=0, (n-1)\2, 4^k*stirling(n, 2*k+1, 1));
-
a(n) = if(n<3, 0^n-(-1)^n, (-1)^(n+1)*(n+1)!/4);
Showing 1-6 of 6 results.
Comments