cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055887 Number of ordered partitions of partitions.

Original entry on oeis.org

1, 1, 3, 8, 22, 59, 160, 431, 1164, 3140, 8474, 22864, 61697, 166476, 449210, 1212113, 3270684, 8825376, 23813776, 64257396, 173387612, 467856828, 1262431711, 3406456212, 9191739970, 24802339472, 66924874539, 180585336876, 487278670744, 1314838220172
Offset: 0

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Comments

Jordan matrices are upper bidiagonal matrices such that (A) the diagonal entries are in sorted order, (B) there are only 1's and 0's on the superdiagonal, (C) for each superdiagonal 1, the two diagonal entries to the left and below it must be equal. Let J(N) be the number of N X N Jordan matrices where the diagonal values are, without loss of generality, taken to be a prefix of some fixed strictly increasing sequence x_1, x_2, x_3, ... If Jordan blocks sorted by eigenvalue with ties broken by block size during the sorting, then J(1, 2, 3, ...) is this sequence. - Warren D. Smith, Jan 28 2002
Number of compositions of n into parts k >= 1 where there are A000041(k) sorts of part k. - Joerg Arndt, Sep 30 2012
Also number of chains of multisets that partition a normal multiset of weight n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Oct 28 2015
From Gus Wiseman, Jul 31 2022: (Start)
Also the number of ways to choose a multiset partition into constant multisets of a multiset of length n covering an initial interval of positive integers. This interpretation involves only multisets, not sequences. For example, the a(1) = 1 through a(3) = 8 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}}
{{1},{1}} {{1},{1,1}}
{{1},{2}} {{1},{2,2}}
{{2},{1,1}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{2}}
{{1},{2},{3}}
Factorizations into prime powers, are counted by A000688.
The strongly normal case is A063834.
The strongly normal strict case is A270995.
Twice-partitions of type PPR are counted by A279784, factorizations A295935.
The strict case is A304969.
(End)

Examples

			The a(4) = 22 chains of multisets, where notation x-y means "y is a submultiset of x", are: (o-o-o-o) (oo-o-o) (oo-oo) (ooo-o) (oooo) (oe-o-o) (ooe-o) (oooe) (oe-oe) (ooe-e) (oee-o) (ooee) (oei-o) (ooei) (oe-e-e) (oee-e) (oeee) (oei-e) (oeei) (oei-i) (oeii) (oeis).
From _Gus Wiseman_, Jul 31 2022: (Start)
a(n) is the number of ways to choose an integer partition of each part of an integer composition of n. The a(0) = 1 through a(3) = 8 choices are:
  ()  ((1))  ((2))     ((3))
             ((11))    ((21))
             ((1)(1))  ((111))
                       ((1)(2))
                       ((2)(1))
                       ((1)(11))
                       ((11)(1))
                       ((1)(1)(1))
(End)
		

Crossrefs

Row sums of A060642.
Cf. A326346.
The unordered version is A001970, row-sums of A061260.
A000041 counts integer partitions, strict A000009.
A011782 counts integer compositions.
A072233 counts partitions by sum and length.

Programs

  • Maple
    with(combstruct); SeqSetSetU := [T, {T=Sequence(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled];
    P := (x) -> product( 1/(1-x^k), k=1..20 ) - 1; F := (x) -> series( 1/(1-P(x)) - 1, x, 21 ); # F(x) is g.f. for this sequence # Warren D. Smith, Jan 28 2002
    A055887rec:= proc(n::integer) local k; option remember; with(combinat): if n = 0 then 1 else add(numbpart(k) *procname(n - k), k=1..n); end if; end proc: seq (A055887rec(n), n=0..10); # Thomas Wieder, Nov 26 2007
  • Mathematica
    a = 1/Product[(1 - x^k), {k, 1, \[Infinity]}] - 1; CoefficientList[Series[1/(1 - a), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 23 2010 *)
    (1/(2 - 1/QPochhammer[x]) + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *)
    Table[Sum[Times@@PartitionsP/@c,{c,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}] (* Gus Wiseman, Jul 31 2022 *)
  • PARI
    Vec(1/(2-1/eta(x+O(x^66)))) \\ Joerg Arndt, Sep 30 2012

Formula

Invert transform of partitions numbers A000041.
Let p(k) be the number of integer partitions of k. Furthermore, set a(0)=1. Then a(n) = Sum_{k=1..n} p(k)*a(n-k). - Thomas Wieder, Nov 26 2007
G.f.: 1/( 1 - Sum_{k>=1} p(k)*x^k ) where p(k) = A000041(k) is the number of integer partitions of k. - Joerg Arndt, Sep 30 2012
a(n) ~ c * d^n, where d = 2.698329106474211231263998666188376330713465125913986356769... (see A246828) and c = 0.414113793172792357745578049739573823627306487211379286647... - Vaclav Kotesovec, Mar 29 2014

A131408 Repeated integer partitions or nested integer partitions.

Original entry on oeis.org

1, 1, 2, 5, 14, 35, 95, 248, 668, 1781, 4799, 12890, 34766, 93647, 252635, 681272, 1838135, 4958738, 13379885, 36100214, 97409045, 262833314, 709207394, 1913652308, 5163654671, 13933178390, 37596275726, 101446960109, 273737216768, 738632652929, 1993073801930
Offset: 0

Views

Author

Thomas Wieder, Jul 09 2007

Keywords

Comments

See A131407 for the labeled case (with much more explanation).
Also the number of sequences of distinct integer partitions (y_1, ..., y_k), containing no partitions of the form (111..1) other than (1), such that sum(y_1) = n and length(y_i) = sum(y_{i+1}) for all i = 1, ..., k-1. - Gus Wiseman, Jul 20 2018

Examples

			Let denote * an unlabeled element. Then a(n=3)=5 because we have [ *,*,* ], [ *, * ][ * ], [[ *,* ]][[ * ]], [[ *,* ][ * ]], [ * ][ * ][ * ].
From _Gus Wiseman_, Jul 20 2018: (Start)
The a(4) = 14 sequences of integer partitions:
  (4), (31), (22), (211),
  (4)(1), (31)(2), (22)(2), (211)(3), (211)(21),
  (31)(2)(1), (22)(2)(1), (211)(3)(1), (211)(21)(2),
  (211)(21)(2)(1).
(End)
		

Crossrefs

Programs

  • Maple
    A000041 := proc(n) combinat[numbpart](n) ; end: A008284 := proc(n,k) if k = 1 or k = n then 1; elif k > n then 0 ; else procname(n-1,k-1)+procname(n-k,k) ; fi ; end: A131408 := proc(n) option remember; local i ; if n <= 2 then n; else A000041(n)+add(A008284(n,i)*procname(i),i=2..n-1) ; fi ; end: for n from 1 to 40 do printf("%d,",A131408(n)) ; od: # R. J. Mathar, Aug 07 2008
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) + b(n-i, min(n-i, i)))
        end:
    a:= proc(n) option remember; b(n$2)+
          add(b(n-i, min(n-i, i))*a(i), i=2..n-1)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 03 2020
  • Mathematica
    t[, 1] = 1; t[n, k_] /; 1 <= k <= n := t[n, k] = Sum[t[n-i, k-1], {i, 1, n-1}] - Sum[t[n-i, k], {i, 1, k-1}]; t[, ] = 0; a[1]=1; a[2]=2; a[n_] := a[n] = PartitionsP[n] + Sum[t[n, i]*a[i], {i, 2, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 02 2017 *)
    roo[n_]:=If[n==1,{{{1}}},Join@@Cases[Most[IntegerPartitions[n]],y_:>Prepend[(Prepend[#,y]&/@roo[Length[y]]),{y}]]];
    Table[Length[roo[n]],{n,10}] (* Gus Wiseman, Jul 20 2018 *)

Formula

a(n) = A000041(n) + Sum_{i=2..n-1} A008284(n,i)*a(i).
a(n) ~ c * d^n, where d = A246828 = 2.69832910647421123126399866618837633..., c = 0.232635324064951140265176690908381464098550827908380222089145... . - Vaclav Kotesovec, Sep 04 2014

Extensions

Edited and extended by R. J. Mathar, Aug 07 2008
a(0)=1 prepended and edited by Alois P. Heinz, Sep 03 2020

A326346 Total number of partitions in the partitions of compositions of n.

Original entry on oeis.org

0, 1, 4, 14, 47, 151, 474, 1457, 4414, 13210, 39155, 115120, 336183, 976070, 2819785, 8110657, 23239662, 66362960, 188930728, 536407146, 1519205230, 4293061640, 12106883585, 34079016842, 95762829405, 268670620736, 752676269695, 2105751165046, 5883798478398
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2019

Keywords

Examples

			a(3) = 14 = 1+1+1+2+2+2+2+3 counts the partitions in 3, 21, 111, 2|1, 11|1, 1|2, 1|11, 1|1|1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0], (p-> p+
          [0, p[1]])(add(combinat[numbpart](j)*b(n-j), j=1..n)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=0..32);
  • Mathematica
    b[n_] := b[n] = If[n==0, {1, 0}, Function[p, p + {0, p[[1]]}][Sum[ PartitionsP[j] b[n-j], {j, 1, n}]]];
    a[n_] := b[n][[2]];
    a /@ Range[0, 32] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A060642(n,k).
a(n) ~ c * d^n * n, where d = A246828 = 2.69832910647421123126399866618837633... and c = 0.171490233695958246364725709205670983251448838158816... - Vaclav Kotesovec, Sep 14 2019

A095975 -a(n) is inverse EULER transform of -A000041(n).

Original entry on oeis.org

1, 2, 5, 11, 27, 60, 147, 344, 839, 2031, 5017, 12379, 30921, 77407, 195121, 493451, 1253613, 3194303, 8166757, 20933754, 53798919, 138566312, 357647565, 924834079, 2395702801, 6215748612, 16150985071, 42024182520, 109485000777, 285578913962, 745728542725
Offset: 1

Views

Author

Vladeta Jovovic, Jul 20 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; `if`(n=0,1, add(add(d, d=divisors(j)) *b(n-j), j=1..n)/n) end: c:= proc(n) option remember; local j; add(c(j) *b(n-j), j=1..n-1)-n*b(n) end: a:= -proc(n) option remember; local d; `if`(n=0,1, add(mobius(n/d)*c(d), d=divisors(n))/n) end: seq(a(n), n=1..40); # Alois P. Heinz, Sep 09 2008
    # The function EulerInvTransform is defined in A358451.
    a := -EulerInvTransform(n -> -combinat:-numbpart(n)):
    seq(a(n), n = 1..31); # Peter Luschny, Nov 21 2022
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d, {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; c[n_] := c[n] = Sum[c[j]*b[n-j], {j, 1, n-1}] - n*b[n]; a[n_] := -If[n == 0, 1, Sum[MoebiusMu[n/d]*c[d], {d, Divisors[n]}]/n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

Moebius transform of A055890(n).
a(n) ~ d^n / n, d = 2.69832910647421123126399866618837... (see A246828). - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Sep 09 2008

A141799 Number of repeated integer partitions of n.

Original entry on oeis.org

1, 3, 8, 25, 66, 192, 511, 1418, 3812, 10383, 27958, 75758, 204215, 551821, 1488561, 4018722, 10842422, 29262357, 78955472, 213063551, 574905487, 1551325859, 4185959285, 11295211039, 30478118079, 82240300045, 221911189754, 598790247900, 1615732588962
Offset: 1

Views

Author

Thomas Wieder, Jul 05 2008

Keywords

Comments

An integer n can be partitioned into P(n) partitions P([n],i) where i=1,...,P(n) counts the partitions. The partition P([n],i) consists of T(n,i) integer parts t(i,j) with j=1,...,T(n,i). Now we perform on each t(i,j) an integer partition again and arrive at new partitions. Their parts can be partitioned again and so forth. We count such repeated partitions of n. One convention is necessary to avoid an infinite loop: The trivial partition P([n],1)=[n] will not be partitioned again but just counted once (and therefore we also have a(1)=1).

Examples

			For the integers 1, 2, 3 and 4 we have
[1] -> 1,
thus a(1)=1.
[2] -> 1,
[1,1] => [1] ->, [1] -> 1.
thus a(2)=3.
[3] -> 1,
[1,2] => [1] -> 1, [2] -> 3,
[1,1,1] => [1] -> 1, [1] -> 1, [1] -> 1,
thus a(3)=8.
[4] -> 1,
[1,3] => [1] -> 1, [3] -> 8,
[2,2] => [2] -> 3, [2] -> 3,
[1,1,2] => [1] -> 1, [1] -> 1, [2] -> 3,
[1,1,1,1] => [1] -> 1, [1] -> 1, [1] -> 1, [1] -> 1,
thus a(4)=25.
		

Crossrefs

Programs

  • Maple
    A141799 := proc(n) option remember ; local a,P,i,p ; if n =1 then 1; else a := 0 ; for P in combinat[partition](n) do if nops(P) > 1 then for i in P do a := a+procname(i) ; od: else a := a+1 ; fi; od: RETURN(a) ; fi ; end: for n from 1 to 40 do printf("%d,",A141799(n)) ; od: # R. J. Mathar, Aug 25 2008
    # second Maple program
    a:= proc(n) option remember;
          1+ `if`(n>1, b(n, n-1)[2], 0)
        end:
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, n]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2] +g[1]*a(i)]
          fi
        end:
    seq(a(n), n=1..40); # Alois P. Heinz, Apr 05 2012
  • Mathematica
    a[n_] := a[n] = 1 + If[n>1, b[n, n-1][[2]], 0]; b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]*a[i]}]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)

Formula

Let sum_{i=1}^P(n) denote the sum over all integer partitions P([n],i) of n. Let sum_{j=1}^T(i,j) denote the sum over all parts of the i-th integer partition. Then we have the recursive formula 1 if t(i,j)=n a(n) = sum_{i=1}^P(n) sum_{j=1}^T(i,j) { a(t(i,j)) else. E.g. a(4)=25 because [4] contributes 1, [1,3] contributes a(1)+a(3)=1+8=9, [2,2] contributes a(2)+a(2)=3+3=6, [1,1,2] contributes a(1)+a(1)+a(2)=1+1+3=5, [1,1,1,1] contributes a(1)+a(1)+a(1)+a(1)=1+1+1+1=4 which gives in total 25.
a(n) ~ c * d^n, where d = 2.69832910647421123126399866... (see A246828), c = 0.5088820425072641934222229579416714164592334575899644931509447692360546... . - Vaclav Kotesovec, Sep 04 2014

Extensions

Extended by R. J. Mathar, Aug 25 2008

A214948 a(n) is the sum over all proper integer partitions of n of the previous terms.

Original entry on oeis.org

1, 2, 6, 19, 51, 148, 395, 1095, 2945, 8020, 21597, 58518, 157746, 426250, 1149832, 3104236, 8375167, 22603530, 60988687, 164579663, 444082316, 1198312390, 3233419264, 8724918311, 23542640336, 63526028693, 171413973501, 462531951559, 1248062990751, 3367686427976
Offset: 1

Views

Author

Olivier Gérard, Jul 30 2012

Keywords

Comments

By "proper integer partition", one means that the case {n} is excluded for having only one part, equal to the number partitioned.
The growth of this function is exponential a(n) -> c * exp(n). [This is not correct, a(n) ~ c * d^n, where d = A246828 = 2.69832910647421123126399... and c = 0.39308289517441096263558422597609193642795355676880812197435683468376... - Vaclav Kotesovec, Dec 27 2023]

Examples

			a(4) = (a(3)+a(1))+(a(2)+a(2))+(a(2)+a(1)+a(1))+(a(1)+a(1)+a(1)+a(1)) = (6 +  1) + (2 + 2) + (2 + 2*1) + (4*1) = 7 + 4 + 4 + 4 = 19.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<2, [1, n], `if`(i<1, 0,
          b(n, i-1)+(p-> p+[0, p[1]*a(i)])(b(n-i, min(n-i, i)))))
        end:
    a:= n-> b(n, n-1)[2]:
    seq(a(n), n=1..33);  # Alois P. Heinz, Dec 27 2023
  • Mathematica
    Clear[a]; a[1] := 1; a[n_Integer] :=
    a[n] = Plus @@ Map[Function[p, Plus @@ Map[a, p]], Drop[IntegerPartitions[n], 1]]; Table[ a[n], {n,1,30}]

Formula

a(n) = sum( sum( a(i), i in p) , p in P*(n)) where P*(n) is the set of all integer partitions of n excluding {n}, p is a partition of P*(n), i is a part of p.
a(n) ~ exp(k) * a(n-1), k = 0.992632731... (conjecture). - Bill McEachen, Dec 26 2023
Showing 1-6 of 6 results.