A122768
Number of combinations which can be taken from the integer partitions of n. Total number of cases in the (n,m)-fragmentation process.
Original entry on oeis.org
0, 1, 3, 7, 15, 29, 54, 95, 163, 270, 439, 696, 1088, 1669, 2530, 3780, 5591, 8173, 11845, 17000, 24215, 34210, 48008, 66895, 92660, 127554, 174651, 237830, 322297, 434625, 583524, 779972, 1038356, 1376787, 1818755, 2393775, 3139812, 4104433, 5348375, 6947545, 8998201, 11620313, 14965126, 19220569
Offset: 0
a(n=4) = 15 because the possible combinations of all five integer partitions of n=4 are: [1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1], [2], [1, 1], [1, 2], [1, 1, 2], [2], [2, 2], [1], [3], [1, 3], [4].
-
a122768 n = a122768_list !! n
a122768_list = 0 : f (tail a000041_list) [1] where
f (p:ps) rs = (sum $ zipWith (*) rs $ tail a000041_list) : f ps (p : rs)
-- Reinhard Zumkeller, Nov 09 2015
-
A122768 := proc(n::integer) local i,j,prttnlst,prttn,ZahlTeile,H; prttnlst:=partition(n); H := NULL; for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; ZahlTeile := nops(prttn); for j from 1 to ZahlTeile do H := H,op(choose(prttn,j)); od; od; print(n,H,nops([H])); end proc;
A000712 := proc(n) option remember ; add(combinat[numbpart](k)*combinat[numbpart](n-k),k=0..n) ; end: A000041 := proc(n) combinat[numbpart](n) ; end: A122768 := proc(n::integer) RETURN( A000712(n)-A000041(n)) ; end: for n from 0 to 80 do printf("%d,",A122768(n)) ; od: # R. J. Mathar, Aug 25 2008
# third Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(
k*numtheory[sigma](j)*b(n-j, k), j=1..n)/n)
end:
a:= n-> b(n,2)-b(n,1):
seq(a(n), n=0..50); # Alois P. Heinz, Mar 31 2017
-
1/QPochhammer[x]^2 - 1/QPochhammer[x] + O[x]^50 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 05 2017, after Joerg Arndt *)
-
x='x+O('x^66); /* that many terms */
Vec(1/eta(x)^2-1/eta(x)) /* show terms (omitting initial zero) */
/* Joerg Arndt, Jun 21 2011 */
-
from sympy import npartitions
def A122768(n): return (sum(npartitions(k)*npartitions(n-k) for k in range(1,n+1>>1))<<1) + (0 if n&1 else npartitions(n>>1)**2) + npartitions(n) if n else 0 # Chai Wah Wu, Sep 25 2023
A060642
Triangle read by rows: row n lists number of ordered partitions into k parts of partitions of n.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 22, 21, 8, 1, 11, 43, 59, 36, 10, 1, 15, 80, 144, 124, 55, 12, 1, 22, 141, 321, 362, 225, 78, 14, 1, 30, 240, 669, 944, 765, 370, 105, 16, 1, 42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1, 56, 640, 2511, 5100, 6215, 4848, 2478, 824, 171, 20, 1
Offset: 1
Table begins:
1;
2, 1;
3, 4, 1;
5, 10, 6, 1;
7, 22, 21, 8, 1;
11, 43, 59, 36, 10, 1;
15, 80, 144, 124, 55, 12, 1;
22, 141, 321, 362, 225, 78, 14, 1;
30, 240, 669, 944, 765, 370, 105, 16, 1;
42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1;
...
For n=4 there are 5 partitions of 4, namely 4, 31, 22, 211, 11111. There are 5 ways to pick 1 of them; 10 ways to partition one of them into 2 ordered parts: 3,1; 1,3; 2,2; 21,1; 1,21; 2,11; 11,2; 111,1; 1,111; 11,11; 6 ways to partition one of them into 3 ordered parts: 2,1,1; 1,2,1; 1,1,2; 11,1,1; 1,11,1; 1,1,11; and one way to partition one of them into 4 ordered parts: 1,1,1,1. So row 4 is 5,10,6,1.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma](j), j=1..n)/n)
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 12 2015
# Uses function PMatrix from A357368. Adds row and column for n, k = 0.
PMatrix(10, combinat:-numbpart); # Peter Luschny, Oct 07 2022
-
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[ Table[ T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
A338463
Expansion of g.f.: (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^2.
Original entry on oeis.org
1, 0, 2, 2, 3, 4, 5, 8, 9, 12, 15, 20, 23, 28, 36, 44, 52, 62, 76, 90, 106, 124, 149, 176, 203, 236, 279, 324, 372, 430, 499, 576, 657, 752, 867, 992, 1124, 1280, 1463, 1662, 1876, 2124, 2410, 2722, 3061, 3446, 3889, 4374, 4896, 5490, 6166, 6900, 7700, 8600
Offset: 2
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( (-1 + (&*[1+x^(2*j+1): j in [0..m+2]]) )^2 )); // G. C. Greubel, Sep 07 2023
-
nmax = 55; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
With[{k=2}, Drop[CoefficientList[Series[(2/QPochhammer[-1,-x] -1)^k, {x,0,80}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
-
m=80
def f(x): return (-1 + product(1+x^(2*j-1) for j in range(1,m+3)) )^2
def A338463_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
a=A338463_list(m); a[2:] # G. C. Greubel, Sep 07 2023
A341221
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^3.
Original entry on oeis.org
1, 6, 21, 59, 144, 321, 669, 1323, 2511, 4604, 8202, 14253, 24241, 40449, 66363, 107234, 170910, 269004, 418566, 644436, 982536, 1484482, 2223942, 3305484, 4876620, 7144455, 10398123, 15039564, 21624678, 30919323, 43973708, 62222844, 87619212, 122810585
Offset: 3
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..36); # Alois P. Heinz, Feb 07 2021
-
nmax = 36; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &
A341222
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^4.
Original entry on oeis.org
1, 8, 36, 124, 362, 944, 2266, 5100, 10903, 22340, 44168, 84692, 158137, 288452, 515344, 903740, 1558465, 2646820, 4432964, 7329916, 11977507, 19358524, 30970444, 49077936, 77081679, 120054268, 185514428, 284540060, 433360308, 655622392, 985604644, 1472751228
Offset: 4
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 4):
seq(a(n), n=4..35); # Alois P. Heinz, Feb 07 2021
-
nmax = 35; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &
A341223
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^5.
Original entry on oeis.org
1, 10, 55, 225, 765, 2287, 6215, 15680, 37265, 84300, 182933, 383070, 777705, 1536490, 2963120, 5592060, 10349465, 18817760, 33665870, 59341785, 103176877, 177131330, 300530125, 504318530, 837632700, 1377874861, 2246061540, 3630059510, 5819556060, 9258393655, 14622472250
Offset: 5
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 5):
seq(a(n), n=5..35); # Alois P. Heinz, Feb 07 2021
-
nmax = 35; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^5, {x, 0, nmax}], x] // Drop[#, 5] &
A341225
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^6.
Original entry on oeis.org
1, 12, 78, 370, 1437, 4848, 14719, 41148, 107610, 266296, 628941, 1427118, 3127369, 6646440, 13746081, 27744926, 54782271, 106029918, 201512970, 376630680, 693161334, 1257641676, 2251764699, 3982196910, 6961522279, 12038699766, 20607718317, 34938910360
Offset: 6
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 6):
seq(a(n), n=6..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^6, {x, 0, nmax}], x] // Drop[#, 6] &
A341226
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^7.
Original entry on oeis.org
1, 14, 105, 567, 2478, 9317, 31269, 95965, 273896, 735966, 1879059, 4591342, 10797290, 24549924, 54171729, 116368308, 243991034, 500446135, 1006039762, 1985480063, 3852429483, 7358212272, 13850448185, 25718189483, 47150564517, 85417834621, 153015826880
Offset: 7
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 7):
seq(a(n), n=7..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^7, {x, 0, nmax}], x] // Drop[#, 7] &
A341227
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^8.
Original entry on oeis.org
1, 16, 136, 824, 4004, 16608, 61076, 204200, 631714, 1831752, 5027312, 13159104, 33049090, 80030808, 187613348, 427201176, 947520103, 2051989360, 4347996772, 9030416704, 18412343832, 36905322248, 72807201940, 141525042736, 271321432489, 513454659312
Offset: 8
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 8):
seq(a(n), n=8..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^8, {x, 0, nmax}], x] // Drop[#, 8] &
A341228
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^9.
Original entry on oeis.org
1, 18, 171, 1149, 6147, 27891, 111567, 403722, 1345896, 4189334, 12300174, 34337403, 91721385, 235645425, 584759880, 1406588073, 3289489002, 7498465029, 16697615817, 36391839264, 77758115283, 163123713621, 336420277812, 682877289213, 1365674365197, 2693384989056
Offset: 9
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 9):
seq(a(n), n=9..34); # Alois P. Heinz, Feb 07 2021
-
nmax = 34; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^9, {x, 0, nmax}], x] // Drop[#, 9] &
Showing 1-10 of 16 results.
Comments