A304969
Expansion of 1/(1 - Sum_{k>=1} q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).
Original entry on oeis.org
1, 1, 2, 5, 11, 25, 57, 129, 292, 662, 1500, 3398, 7699, 17443, 39519, 89536, 202855, 459593, 1041267, 2359122, 5344889, 12109524, 27435660, 62158961, 140828999, 319065932, 722884274, 1637785870, 3710611298, 8406859805, 19046805534, 43152950024, 97768473163
Offset: 0
From _Gus Wiseman_, Jul 31 2022: (Start)
a(n) is the number of ways to choose a strict integer partition of each part of an integer composition of n. The a(1) = 1 through a(4) = 11 choices are:
((1)) ((2)) ((3)) ((4))
((1)(1)) ((21)) ((31))
((1)(2)) ((1)(3))
((2)(1)) ((2)(2))
((1)(1)(1)) ((3)(1))
((1)(21))
((21)(1))
((1)(1)(2))
((1)(2)(1))
((2)(1)(1))
((1)(1)(1)(1))
(End)
For partitions instead of compositions we have
A270995, non-strict
A063834.
A072233 counts partitions by sum and length.
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(j)*a(n-j), j=1..n))
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 22 2018
-
nmax = 32; CoefficientList[Series[1/(1 - Sum[PartitionsQ[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(2 - Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(2 - 1/QPochhammer[x, x^2]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
A286335
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)^k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 2, 0, 1, 4, 6, 6, 2, 0, 1, 5, 10, 13, 9, 3, 0, 1, 6, 15, 24, 24, 14, 4, 0, 1, 7, 21, 40, 51, 42, 22, 5, 0, 1, 8, 28, 62, 95, 100, 73, 32, 6, 0, 1, 9, 36, 91, 162, 206, 190, 120, 46, 8, 0, 1, 10, 45, 128, 259, 384, 425, 344, 192, 66, 10, 0
Offset: 0
A(3,2) = 6 because we have [3], [3'], [2, 1], [2', 1], [2, 1'] and [2', 1'] (partitions of 3 into distinct parts with 2 types of each part).
Also A(3,2) = 6 because we have [3], [3'], [1, 1, 1], [1, 1, 1'], [1, 1', 1'] and [1', 1', 1'] (partitions of 3 into odd parts with 2 types of each part).
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 3, 6, 10, 15, ...
0, 2, 6, 13, 24, 40, ...
0, 2, 9, 24, 51, 95, ...
0, 3, 14, 42, 100, 206, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..n/i)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 29 2019
-
Table[Function[k, SeriesCoefficient[Product[(1 + x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
A324595
Number of colored integer partitions of 2n such that all colors from an n-set are used and parts differ by size or by color.
Original entry on oeis.org
1, 1, 5, 19, 85, 381, 1751, 8135, 38173, 180415, 857695, 4096830, 19645975, 94523729, 456079769, 2206005414, 10693086637, 51930129399, 252617434619, 1230714593340, 6003931991895, 29325290391416, 143393190367102, 701862880794183, 3438561265961263
Offset: 0
a(2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> add(b(2*n$2, n-i)*(-1)^i*binomial(n, i), i=0..n):
seq(a(n), n=0..25);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n+1),
(q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> g(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 29 2021
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k] Binomial[k, j]][n - i j], {j, 0, Min[k, n/i]}]]];
a[n_] := Sum[b[2n, 2n, n - i] (-1)^i Binomial[n, i], {i, 0, n}];
a /@ Range[0, 25] (* Jean-François Alcover, May 06 2020, after Maple *)
Table[SeriesCoefficient[(-1 + QPochhammer[-1, Sqrt[x]]/2)^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jan 15 2024 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{2 + 2*s == QPochhammer[-1, Sqrt[r*s]], Sqrt[r]*Derivative[0, 1][QPochhammer][-1, Sqrt[r*s]] == 4*Sqrt[s]}, {r, 1/5}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 15 2024 *)
A327381
Number of colored integer partitions of n such that three colors are used and parts differ by size or by color.
Original entry on oeis.org
1, 3, 9, 19, 39, 72, 128, 216, 354, 563, 876, 1335, 1998, 2946, 4284, 6154, 8742, 12294, 17129, 23667, 32442, 44151, 59682, 80169, 107054, 142167, 187812, 246895, 323058, 420852, 545958, 705438, 908043, 1164609, 1488504, 1896174, 2407836, 3048255, 3847716
Offset: 3
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(3):
seq(a(n), n=3..45);
-
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k] Binomial[k, j]], {j, 0, Min[k, n/i]}]]];
a[n_] := With[{k = 3}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]];
a /@ Range[3, 45] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
A327382
Number of colored integer partitions of n such that four colors are used and parts differ by size or by color.
Original entry on oeis.org
1, 4, 14, 36, 85, 180, 360, 680, 1234, 2160, 3674, 6092, 9882, 15724, 24594, 37884, 57553, 86344, 128060, 187948, 273178, 393516, 562158, 796860, 1121375, 1567336, 2176664, 3004692, 4124130, 5630160, 7646916, 10335696, 13905376, 18625564, 24843142, 33003072
Offset: 4
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(4):
seq(a(n), n=4..45);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k] Binomial[k, j]], {j, 0, Min[k, n/i]}]]];
a[n_] := With[{k = 4}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]];
a /@ Range[4, 45] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
A327383
Number of colored integer partitions of n such that five colors are used and parts differ by size or by color.
Original entry on oeis.org
1, 5, 20, 60, 160, 381, 845, 1760, 3495, 6660, 12267, 21935, 38230, 65140, 108785, 178437, 287975, 457965, 718575, 1113680, 1706533, 2587655, 3885615, 5781830, 8530625, 12486429, 18140360, 26169335, 37501595, 53403915, 75597130, 106408670, 148973260, 207496090
Offset: 5
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(5):
seq(a(n), n=5..45);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k] Binomial[k, j]], {j, 0, Min[k, n/i]}]]];
a[n_] := With[{k = 5}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]];
a /@ Range[5, 45] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
A327384
Number of colored integer partitions of n such that six colors are used and parts differ by size or by color.
Original entry on oeis.org
1, 6, 27, 92, 273, 720, 1751, 3978, 8565, 17618, 34878, 66792, 124268, 225384, 399618, 694294, 1184340, 1986900, 3282991, 5349372, 8604978, 13678190, 21503439, 33459222, 51563824, 78751470, 119259576, 179169140, 267154842, 395521482, 581629358, 849846186
Offset: 6
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(6):
seq(a(n), n=6..45);
-
A327384[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^6, {x, 0, n}]; Table[A327384[n], {n, 6, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
A327385
Number of colored integer partitions of n such that seven colors are used and parts differ by size or by color.
Original entry on oeis.org
1, 7, 35, 133, 434, 1253, 3311, 8135, 18851, 41573, 87920, 179305, 354270, 680631, 1275430, 2337097, 4196717, 7398699, 12826324, 21895160, 36848119, 61201709, 100415175, 162886318, 261422357, 415397836, 653899589, 1020282424, 1578729491, 2423647471, 3693050242
Offset: 7
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(7):
seq(a(n), n=7..45);
-
A327385[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^7, {x, 0, n}]; Table[A327385[n], {n, 7, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
A327386
Number of colored integer partitions of n such that eight colors are used and parts differ by size or by color.
Original entry on oeis.org
1, 8, 44, 184, 654, 2048, 5836, 15400, 38173, 89752, 201740, 436104, 911072, 1846648, 3643360, 7016016, 13217634, 24408992, 44260816, 78923480, 138571450, 239838288, 409619196, 690956800, 1152075322, 1900139104, 3102050748, 5015671600, 8036376650, 12766039888
Offset: 8
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):
seq(a(n), n=8..45);
-
A327386[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^8, {x, 0, n}]; Table[A327386[n], {n, 8, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
A327387
Number of colored integer partitions of n such that nine colors are used and parts differ by size or by color.
Original entry on oeis.org
1, 9, 54, 246, 945, 3186, 9729, 27414, 72315, 180415, 429156, 979425, 2155485, 4593330, 9510624, 19188360, 37815948, 72950634, 138002024, 256405887, 468550278, 843138585, 1495634373, 2617905474, 4525424256, 7731765279, 13065217956, 21849902348, 36184992984
Offset: 9
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(9):
seq(a(n), n=9..45);
-
A327387[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^9, {x, 0, n}]; Table[A327387[n], {n, 9, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
Showing 1-10 of 14 results.
Comments