cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A270913 Coefficient of x^n in Product_{k>=1} (1+x^k)^n.

Original entry on oeis.org

1, 1, 3, 13, 51, 206, 855, 3585, 15155, 64525, 276278, 1188353, 5130999, 22226049, 96544003, 420368858, 1834203955, 8018057345, 35107961175, 153950675585, 675978772326, 2971700764941, 13078268135683, 57613905606273, 254038914924791, 1121081799217231
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n),
           (q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> g(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[QPochhammer[-1, x]^n, {x, 0, n}]/2^n, {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[(-1)^j*x^j/(j*(x^j - 1)), {j, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1, n, (1 + x^k +x*O(x^n))^n), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 26 2019

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007... and c = A327280 = 0.260542233142438469433860832160...

A308680 Number T(n,k) of colored integer partitions of n such that all colors from a k-set are used and parts differ by size or by color; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 4, 14, 19, 14, 5, 1, 0, 5, 22, 39, 36, 20, 6, 1, 0, 6, 34, 72, 85, 60, 27, 7, 1, 0, 8, 50, 128, 180, 160, 92, 35, 8, 1, 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1, 0, 12, 104, 354, 680, 845, 720, 434, 184, 54, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2019

Keywords

Comments

For fixed k > 0, T(n,k) ~ exp(Pi*sqrt(k*n/3)) * k^(1/4) / (3^(1/4) * 2^((k+3)/2) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
T is the convolution triangle of A000009 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			T(4,1) = 2: 3a1a, 4a.
T(4,2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
T(4,3) = 3: 2a1b1c, 2b1a1c, 2c1a1b.
T(4,4) = 1: 1a1b1c1d.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  2,   1;
  0,  2,  5,   3,   1;
  0,  3,  8,   9,   4,   1;
  0,  4, 14,  19,  14,   5,   1;
  0,  5, 22,  39,  36,  20,   6,   1;
  0,  6, 34,  72,  85,  60,  27,   7,  1;
  0,  8, 50, 128, 180, 160,  92,  35,  8, 1;
  0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000009 (for n>0), A327380, A327381, A327382, A327383, A327384, A327385, A327386, A327387, A327388.
Main diagonal and lower diagonals give: A000012, A001477, A000096.
Row sums give A304969.
T(2n,n) gives A324595.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
          b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    T:= proc(n, k) option remember;
          `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, b(n)),
              (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Jan 31 2021
    # Uses function PMatrix from A357368.
    PMatrix(10, A000009); # Peter Luschny, Oct 19 2022
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t,    b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]];
    T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * binomial(k,i) * A286335(n,k-i).
Sum_{k=1..n} k * T(n,k) = A325915(n).
G.f. of column k: (-1 + Product_{j>=1} (1 + x^j))^k. - Alois P. Heinz, Jan 29 2021

A340987 Number of colored integer partitions of 2n such that all colors from an n-set are used.

Original entry on oeis.org

1, 2, 10, 59, 362, 2287, 14719, 95965, 631714, 4189334, 27946335, 187319827, 1260570515, 8511460908, 57634550179, 391232510284, 2661483301282, 18140003082945, 123846214549072, 846801764644618, 5797865791444367, 39745254613927264, 272762265331208465
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2021

Keywords

Examples

			a(1) = 2: 2a, 1a1a.
a(2) = 10: 3a1b, 3b1a, 2a2b, 2a1b1b, 2b1a1a, 2a1a1b, 2b1a1b, 1a1b1b1b, 1a1a1b1b, 1a1a1a1b.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<2, combinat[numbpart](n+1),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, k_] := b[n, k] = If[k<2, PartitionsP[n+1], With[{q = Quotient[k, 2]}, Sum[b[j, q] b[n-j, k-q], {j, 0, n}]]];
    a[n_] := b[n, n];
    a /@ Range[0, 25] (* Jean-François Alcover, Feb 04 2021, after Alois P. Heinz *)
    Table[SeriesCoefficient[(-1 + 1/QPochhammer[Sqrt[x]])^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jan 15 2024 *)
    (* Calculation of constant d: *) 1/r/.FindRoot[{1 + s == 1/QPochhammer[Sqrt[r*s]], 1/(1 + s) + Sqrt[r]*(1 + s)*Derivative[0, 1][QPochhammer][Sqrt[r*s], Sqrt[r*s]] / (2*Sqrt[s]) == (Log[1 - Sqrt[r*s]] + QPolyGamma[0, 1, Sqrt[r*s]]) / (s*Log[r*s])}, {r, 1/7}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 15 2024 *)

Formula

a(n) = [x^(2n)] (-1 + Product_{j>0} 1/(1-x^j))^n.
a(n) = A060642(2*n,n).
a(n) = Sum_{i=0..n} (-1)^i * C(n,i) * A144064(2n,n-i).
a(n) ~ c * d^n / sqrt(n), where d = 7.0224714601856191637116674203375767768930294104680988528373522936595686998... and c = 0.306577097117652483059452115503859901867921865482563952948772592499558... - Vaclav Kotesovec, Feb 14 2021

A341265 Coefficient of x^(2*n) in (-1 + Product_{k>=1} 1 / (1 + x^k))^n.

Original entry on oeis.org

1, 0, 2, 3, 10, 25, 71, 203, 562, 1650, 4667, 13673, 39427, 115440, 336639, 987628, 2898658, 8529257, 25134200, 74173606, 219207815, 648546314, 1921045953, 5695642513, 16902924883, 50203798050, 149229323544, 443895849894, 1321292939459, 3935377071154, 11728037768186
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, g(n+1),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    Table[SeriesCoefficient[(-1 + 1/QPochhammer[-x, x])^n, {x, 0, 2 n}], {n, 0, 30}]
    A[n_, k_] := A[n, k] = If[n == 0, 1, -k Sum[A[n - j, k] Sum[Mod[d, 2] d, {d, Divisors[j]}], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; Table[T[2 n, n], {n, 0, 30}]

Formula

a(n) = A341279(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 3.03044218957412050685579849718626198523346... and c = 0.2319377657497495246637662111041144... - Vaclav Kotesovec, Feb 20 2021

A341263 Coefficient of x^(2*n) in (-1 + Product_{k>=1} (1 - x^k))^n.

Original entry on oeis.org

1, -1, 1, -1, -3, 19, -65, 181, -419, 755, -749, -1530, 12255, -47477, 141065, -343526, 660941, -770917, -911369, 9721976, -40135713, 124134772, -313463842, 631382751, -824406065, -492101356, 8192253811, -35948431288, 115087580857, -299576625051, 627027769120, -894734468883
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add(
         -d, d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, g(n+1),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..31);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    Table[SeriesCoefficient[(-1 + QPochhammer[x, x])^n, {x, 0, 2 n}], {n, 0, 31}]
    A[n_, k_] := A[n, k] = If[n == 0, 1, -k Sum[A[n - j, k] DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}];
    Table[T[2 n, n], {n, 0, 31}]

A341395 Coefficient of x^(2*n) in (-1 + Product_{k>=1} (1 + x^k)^k)^n.

Original entry on oeis.org

1, 2, 14, 92, 662, 4872, 36578, 278161, 2135902, 16522967, 128574734, 1005321616, 7891885382, 62160038813, 491003317483, 3888045701232, 30854283708670, 245315312649653, 1953735732991919, 15583347966328833, 124463844976490422, 995305632560023009, 7968042676400949882
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k<2, g(n+1), (q->
          add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    Join[{1}, Table[SeriesCoefficient[(-1 + Product[(1 + x^k)^k, {k, 1, 2 n}])^n, {x, 0, 2 n}], {n, 1, 22}]]
    A[n_, k_] := A[n, k] = If[n == 0, 1, k Sum[A[n - j, k] Sum[(-1)^(j/d + 1) d^2, {d, Divisors[j]}], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; Table[T[2 n, n], {n, 0, 22}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 8.191928734348241613884260036383361206707761707495484130816183793791732456844... and c = 0.30227512720649344220720362916140286571342247518684432176920275576011986255... - Vaclav Kotesovec, Feb 20 2021
Showing 1-6 of 6 results.