A270913
Coefficient of x^n in Product_{k>=1} (1+x^k)^n.
Original entry on oeis.org
1, 1, 3, 13, 51, 206, 855, 3585, 15155, 64525, 276278, 1188353, 5130999, 22226049, 96544003, 420368858, 1834203955, 8018057345, 35107961175, 153950675585, 675978772326, 2971700764941, 13078268135683, 57613905606273, 254038914924791, 1121081799217231
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n),
(q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> g(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 31 2021
-
Table[SeriesCoefficient[Product[(1+x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[QPochhammer[-1, x]^n, {x, 0, n}]/2^n, {n, 0, 25}]
Table[SeriesCoefficient[Exp[n*Sum[(-1)^j*x^j/(j*(x^j - 1)), {j, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, May 19 2018 *)
-
{a(n)=polcoeff(prod(k=1, n, (1 + x^k +x*O(x^n))^n), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 26 2019
A308680
Number T(n,k) of colored integer partitions of n such that all colors from a k-set are used and parts differ by size or by color; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 4, 14, 19, 14, 5, 1, 0, 5, 22, 39, 36, 20, 6, 1, 0, 6, 34, 72, 85, 60, 27, 7, 1, 0, 8, 50, 128, 180, 160, 92, 35, 8, 1, 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1, 0, 12, 104, 354, 680, 845, 720, 434, 184, 54, 10, 1
Offset: 0
T(4,1) = 2: 3a1a, 4a.
T(4,2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
T(4,3) = 3: 2a1b1c, 2b1a1c, 2c1a1b.
T(4,4) = 1: 1a1b1c1d.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 2, 5, 3, 1;
0, 3, 8, 9, 4, 1;
0, 4, 14, 19, 14, 5, 1;
0, 5, 22, 39, 36, 20, 6, 1;
0, 6, 34, 72, 85, 60, 27, 7, 1;
0, 8, 50, 128, 180, 160, 92, 35, 8, 1;
0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1;
...
Columns k=0-10 give:
A000007,
A000009 (for n>0),
A327380,
A327381,
A327382,
A327383,
A327384,
A327385,
A327386,
A327387,
A327388.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, b(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 31 2021
# Uses function PMatrix from A357368.
PMatrix(10, A000009); # Peter Luschny, Oct 19 2022
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
A340987
Number of colored integer partitions of 2n such that all colors from an n-set are used.
Original entry on oeis.org
1, 2, 10, 59, 362, 2287, 14719, 95965, 631714, 4189334, 27946335, 187319827, 1260570515, 8511460908, 57634550179, 391232510284, 2661483301282, 18140003082945, 123846214549072, 846801764644618, 5797865791444367, 39745254613927264, 272762265331208465
Offset: 0
a(1) = 2: 2a, 1a1a.
a(2) = 10: 3a1b, 3b1a, 2a2b, 2a1b1b, 2b1a1a, 2a1a1b, 2b1a1b, 1a1b1b1b, 1a1a1b1b, 1a1a1a1b.
-
b:= proc(n, k) option remember; `if`(k<2, combinat[numbpart](n+1),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
-
b[n_, k_] := b[n, k] = If[k<2, PartitionsP[n+1], With[{q = Quotient[k, 2]}, Sum[b[j, q] b[n-j, k-q], {j, 0, n}]]];
a[n_] := b[n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Feb 04 2021, after Alois P. Heinz *)
Table[SeriesCoefficient[(-1 + 1/QPochhammer[Sqrt[x]])^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jan 15 2024 *)
(* Calculation of constant d: *) 1/r/.FindRoot[{1 + s == 1/QPochhammer[Sqrt[r*s]], 1/(1 + s) + Sqrt[r]*(1 + s)*Derivative[0, 1][QPochhammer][Sqrt[r*s], Sqrt[r*s]] / (2*Sqrt[s]) == (Log[1 - Sqrt[r*s]] + QPolyGamma[0, 1, Sqrt[r*s]]) / (s*Log[r*s])}, {r, 1/7}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 15 2024 *)
A341265
Coefficient of x^(2*n) in (-1 + Product_{k>=1} 1 / (1 + x^k))^n.
Original entry on oeis.org
1, 0, 2, 3, 10, 25, 71, 203, 562, 1650, 4667, 13673, 39427, 115440, 336639, 987628, 2898658, 8529257, 25134200, 74173606, 219207815, 648546314, 1921045953, 5695642513, 16902924883, 50203798050, 149229323544, 443895849894, 1321292939459, 3935377071154, 11728037768186
Offset: 0
Cf.
A000700,
A081362,
A255526,
A324595,
A338463,
A340987,
A341241,
A341243,
A341244,
A341245,
A341246,
A341247,
A341251,
A341253,
A341263,
A341279.
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, g(n+1),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 07 2021
-
Table[SeriesCoefficient[(-1 + 1/QPochhammer[-x, x])^n, {x, 0, 2 n}], {n, 0, 30}]
A[n_, k_] := A[n, k] = If[n == 0, 1, -k Sum[A[n - j, k] Sum[Mod[d, 2] d, {d, Divisors[j]}], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; Table[T[2 n, n], {n, 0, 30}]
A341263
Coefficient of x^(2*n) in (-1 + Product_{k>=1} (1 - x^k))^n.
Original entry on oeis.org
1, -1, 1, -1, -3, 19, -65, 181, -419, 755, -749, -1530, 12255, -47477, 141065, -343526, 660941, -770917, -911369, 9721976, -40135713, 124134772, -313463842, 631382751, -824406065, -492101356, 8192253811, -35948431288, 115087580857, -299576625051, 627027769120, -894734468883
Offset: 0
Cf.
A001482,
A001483,
A001484,
A001485,
A001486,
A001487,
A001488,
A008705,
A010815,
A047654,
A047655,
A324595,
A340987,
A341265.
-
g:= proc(n) option remember; `if`(n=0, 1, add(add(
-d, d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, g(n+1),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..31); # Alois P. Heinz, Feb 07 2021
-
Table[SeriesCoefficient[(-1 + QPochhammer[x, x])^n, {x, 0, 2 n}], {n, 0, 31}]
A[n_, k_] := A[n, k] = If[n == 0, 1, -k Sum[A[n - j, k] DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}];
Table[T[2 n, n], {n, 0, 31}]
A341395
Coefficient of x^(2*n) in (-1 + Product_{k>=1} (1 + x^k)^k)^n.
Original entry on oeis.org
1, 2, 14, 92, 662, 4872, 36578, 278161, 2135902, 16522967, 128574734, 1005321616, 7891885382, 62160038813, 491003317483, 3888045701232, 30854283708670, 245315312649653, 1953735732991919, 15583347966328833, 124463844976490422, 995305632560023009, 7968042676400949882
Offset: 0
Cf.
A026007,
A257675,
A270913,
A270922,
A324595,
A341384,
A341385,
A341386,
A341387,
A341388,
A341390,
A341391,
A341393,
A341394.
-
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
`if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k<2, g(n+1), (q->
add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..22); # Alois P. Heinz, Feb 10 2021
-
Join[{1}, Table[SeriesCoefficient[(-1 + Product[(1 + x^k)^k, {k, 1, 2 n}])^n, {x, 0, 2 n}], {n, 1, 22}]]
A[n_, k_] := A[n, k] = If[n == 0, 1, k Sum[A[n - j, k] Sum[(-1)^(j/d + 1) d^2, {d, Divisors[j]}], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; Table[T[2 n, n], {n, 0, 22}]
Showing 1-6 of 6 results.
Comments