cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341279 Triangle read by rows: T(n,k) = coefficient of x^n in expansion of (-1 + Product_{j>=1} 1 / (1 + (-x)^j))^k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 3, 3, 4, 0, 1, 0, 1, 4, 6, 4, 5, 0, 1, 0, 2, 5, 9, 10, 5, 6, 0, 1, 0, 2, 8, 13, 16, 15, 6, 7, 0, 1, 0, 2, 9, 21, 26, 25, 21, 7, 8, 0, 1, 0, 2, 12, 27, 44, 45, 36, 28, 8, 9, 0, 1, 0, 3, 15, 40, 63, 80, 71, 49, 36, 9, 10, 0, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2021

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,  1;
  0,  0,  1;
  0,  1,  0,  1;
  0,  1,  2,  0,  1;
  0,  1,  2,  3,  0,  1;
  0,  1,  3,  3,  4,  0,  1;
  0,  1,  4,  6,  4,  5,  0,  1;
  0,  2,  5,  9, 10,  5,  6,  0,  1;
  0,  2,  8, 13, 16, 15,  6,  7,  0,  1;
  0,  2,  9, 21, 26, 25, 21,  7,  8,  0,  1;
  0,  2, 12, 27, 44, 45, 36, 28,  8,  9,  0,  1;
  ...
		

Crossrefs

Main diagonal and lower diagonals give A000012, A000004, A001477, A000217, A000290.
Row sums give A307058.
T(2n,n) gives A341265.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    T:= proc(n, k) option remember;
          `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Feb 09 2021
  • Mathematica
    T[n_, k_] := SeriesCoefficient[(-1 + 2/QPochhammer[-1, -x])^k, {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten

Formula

G.f. of column k: (-1 + Product_{j>=1} (1 + x^(2*j-1)))^k.
Sum_{k=0..n} (-1)^(n-k) * T(n,k) = A000009(n).

A341263 Coefficient of x^(2*n) in (-1 + Product_{k>=1} (1 - x^k))^n.

Original entry on oeis.org

1, -1, 1, -1, -3, 19, -65, 181, -419, 755, -749, -1530, 12255, -47477, 141065, -343526, 660941, -770917, -911369, 9721976, -40135713, 124134772, -313463842, 631382751, -824406065, -492101356, 8192253811, -35948431288, 115087580857, -299576625051, 627027769120, -894734468883
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add(
         -d, d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, g(n+1),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..31);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    Table[SeriesCoefficient[(-1 + QPochhammer[x, x])^n, {x, 0, 2 n}], {n, 0, 31}]
    A[n_, k_] := A[n, k] = If[n == 0, 1, -k Sum[A[n - j, k] DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}];
    Table[T[2 n, n], {n, 0, 31}]
Showing 1-2 of 2 results.