A308680
Number T(n,k) of colored integer partitions of n such that all colors from a k-set are used and parts differ by size or by color; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 4, 14, 19, 14, 5, 1, 0, 5, 22, 39, 36, 20, 6, 1, 0, 6, 34, 72, 85, 60, 27, 7, 1, 0, 8, 50, 128, 180, 160, 92, 35, 8, 1, 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1, 0, 12, 104, 354, 680, 845, 720, 434, 184, 54, 10, 1
Offset: 0
T(4,1) = 2: 3a1a, 4a.
T(4,2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
T(4,3) = 3: 2a1b1c, 2b1a1c, 2c1a1b.
T(4,4) = 1: 1a1b1c1d.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 2, 5, 3, 1;
0, 3, 8, 9, 4, 1;
0, 4, 14, 19, 14, 5, 1;
0, 5, 22, 39, 36, 20, 6, 1;
0, 6, 34, 72, 85, 60, 27, 7, 1;
0, 8, 50, 128, 180, 160, 92, 35, 8, 1;
0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1;
...
Columns k=0-10 give:
A000007,
A000009 (for n>0),
A327380,
A327381,
A327382,
A327383,
A327384,
A327385,
A327386,
A327387,
A327388.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, b(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 31 2021
# Uses function PMatrix from A357368.
PMatrix(10, A000009); # Peter Luschny, Oct 19 2022
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
A341221
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^3.
Original entry on oeis.org
1, 6, 21, 59, 144, 321, 669, 1323, 2511, 4604, 8202, 14253, 24241, 40449, 66363, 107234, 170910, 269004, 418566, 644436, 982536, 1484482, 2223942, 3305484, 4876620, 7144455, 10398123, 15039564, 21624678, 30919323, 43973708, 62222844, 87619212, 122810585
Offset: 3
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..36); # Alois P. Heinz, Feb 07 2021
-
nmax = 36; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &
A341385
Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^3.
Original entry on oeis.org
1, 6, 27, 92, 279, 762, 1952, 4725, 10968, 24551, 53346, 112932, 233755, 474288, 945384, 1854517, 3585534, 6841182, 12895246, 24035841, 44337672, 80999765, 146644746, 263249169, 468817933, 828658233, 1454315508, 2535217624, 4391290854, 7560034419, 12939963016
Offset: 3
-
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
`if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..33); # Alois P. Heinz, Feb 10 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &
A341241
Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^3.
Original entry on oeis.org
1, 0, 3, 3, 6, 9, 13, 21, 27, 40, 54, 75, 97, 129, 171, 220, 282, 360, 460, 576, 720, 896, 1116, 1374, 1682, 2061, 2517, 3050, 3684, 4449, 5354, 6414, 7656, 9135, 10875, 12891, 15243, 18015, 21243, 24966, 29286, 34326, 40156, 46851, 54573, 63509, 73794, 85551, 99035, 114555
Offset: 3
Cf.
A000700,
A022598,
A047655,
A107635,
A327381,
A338463,
A341221,
A341243,
A341244,
A341245,
A341246,
A341247,
A341251.
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..52); # Alois P. Heinz, Feb 07 2021
-
nmax = 52; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &
A341364
Expansion of (1 / theta_4(x) - 1)^3 / 8.
Original entry on oeis.org
1, 6, 24, 77, 216, 552, 1315, 2964, 6387, 13255, 26640, 52074, 99336, 185430, 339483, 610709, 1081227, 1886484, 3247502, 5521365, 9279624, 15429149, 25397088, 41412030, 66928700, 107265576, 170556654, 269164346, 421765920, 656419080, 1015044526, 1559950185, 2383284894
Offset: 3
Cf.
A002448,
A004404,
A014968,
A015128,
A063691,
A319552,
A327381,
A338223,
A341221,
A341365,
A341366,
A341367,
A341368,
A341369,
A341370.
-
g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..35); # Alois P. Heinz, Feb 10 2021
-
nmax = 35; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^3/8, {x, 0, nmax}], x] // Drop[#, 3] &
nmax = 35; CoefficientList[Series[(1/8) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &
Showing 1-5 of 5 results.
Comments