A022567
Expansion of Product_{m>=1} (1+x^m)^2.
Original entry on oeis.org
1, 2, 3, 6, 9, 14, 22, 32, 46, 66, 93, 128, 176, 238, 319, 426, 562, 736, 960, 1242, 1598, 2048, 2608, 3306, 4175, 5248, 6570, 8198, 10190, 12622, 15589, 19190, 23552, 28830, 35190, 42842, 52034, 63040, 76198, 91904, 110604, 132832, 159216, 190464, 227417
Offset: 0
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 9*x^4 + 14*x^5 + 22*x^6 + 32*x^7 + 46*x^8 + ...
G.f. = q + 2*q^13 + 3*q^25 + 6*q^37 + 9*q^49 + 14*q^61 + 22*q^73 + 32*q^85 + ...
- P. J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
- Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- George E. Andrews, David Newman, Partitions and the Minimal Excludant, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
- Cristina Ballantine, Mircea Merca, Bisected theta series, least r-gaps in partitions, and polygonal numbers, arXiv:1710.05960 [math.CO], 2017.
- Helena Bergold, Lukas Egeling, and Hung. P. Hoang, Signotopes with few plus signs, arXiv:2411.19208 [math.CO], 2024. See p. 14.
- J. Currie, N. Rampersad, Binary words avoiding xx^Rx and strongly unimodal sequences, JIS 18 (2015) #15.10.3.
- Alejandro Erickson, Frank Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv:1304.0070 [math.CO], 2013.
- Alejandro Erickson and Mark Schurch, Monomer-dimer tatami tilings of square regions, arXiv preprint arXiv:1110.5103 [math.CO], 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 852
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- Mircea Merca, A new look on the generating function for the number of divisors, Journal of Number Theory, Volume 149, April 2015, Pages 57-69.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75. See q(n)'.
- Mbavhalelo Mulokwe and Konstantinos Zoubos, Free fermions, neutrality and modular transformations, arXiv:2403.08531 [hep-th], 2024.
- Michael Somos, Introduction to Ramanujan theta functions
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
-
Coefficients(&*[(1+x^m)^2:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
-
A022567 := proc(n)
local x,m;
product((1+x^m)^2,m=1..n) ;
expand(%) ;
coeff(%,x,n) ;
end proc: # R. J. Mathar, Jun 18 2016
-
a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^-2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
(QPochhammer[-1, x]^2/4 + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *)
nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; poly[[3]] = 1; Do[Do[Do[poly[[j+1]] += poly[[j-k+1]], {j, nmax, k, -1}]; , {p, 1, 2}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 14 2017 *)
-
{a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n))^2, n))}; /* Michael Somos, Mar 21 2004 */
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^2, n))}; /* Michael Somos, Jun 03 2005 */
-
# uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(0, 1, 0, 2)
a = EulerTransform(b)
print([a(n) for n in range(45)]) # Peter Luschny, Nov 11 2020
A299106
Expansion of 1/(1 - x*Product_{k>=1} (1 + x^k)).
Original entry on oeis.org
1, 1, 2, 4, 9, 19, 41, 88, 189, 405, 869, 1864, 3998, 8575, 18392, 39448, 84610, 181475, 389235, 834848, 1790617, 3840591, 8237462, 17668057, 37895195, 81279216, 174331098, 373912708, 801983781, 1720128713, 3689404772, 7913191304, 16972547194, 36403436640
Offset: 0
-
nmax = 33; CoefficientList[Series[1/(1 - x Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 33; CoefficientList[Series[1/(1 - x/QPochhammer[x, x^2]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]
A308680
Number T(n,k) of colored integer partitions of n such that all colors from a k-set are used and parts differ by size or by color; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 4, 14, 19, 14, 5, 1, 0, 5, 22, 39, 36, 20, 6, 1, 0, 6, 34, 72, 85, 60, 27, 7, 1, 0, 8, 50, 128, 180, 160, 92, 35, 8, 1, 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1, 0, 12, 104, 354, 680, 845, 720, 434, 184, 54, 10, 1
Offset: 0
T(4,1) = 2: 3a1a, 4a.
T(4,2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
T(4,3) = 3: 2a1b1c, 2b1a1c, 2c1a1b.
T(4,4) = 1: 1a1b1c1d.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 2, 5, 3, 1;
0, 3, 8, 9, 4, 1;
0, 4, 14, 19, 14, 5, 1;
0, 5, 22, 39, 36, 20, 6, 1;
0, 6, 34, 72, 85, 60, 27, 7, 1;
0, 8, 50, 128, 180, 160, 92, 35, 8, 1;
0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1;
...
Columns k=0-10 give:
A000007,
A000009 (for n>0),
A327380,
A327381,
A327382,
A327383,
A327384,
A327385,
A327386,
A327387,
A327388.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, b(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 31 2021
# Uses function PMatrix from A357368.
PMatrix(10, A000009); # Peter Luschny, Oct 19 2022
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
A286352
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + x^j)^k.
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 1, -1, 0, 1, -4, 3, -2, 1, 0, 1, -5, 6, -4, 4, -1, 0, 1, -6, 10, -8, 9, -4, 1, 0, 1, -7, 15, -15, 17, -12, 5, -1, 0, 1, -8, 21, -26, 30, -28, 15, -6, 2, 0, 1, -9, 28, -42, 51, -56, 38, -21, 9, -2, 0, 1, -10, 36, -64, 84
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, ...
0, 0, 1, 3, 6, 10, ...
0, -1, -2, -4, -8, -15, ...
0, 1, 4, 9, 17, 30, ...
A022577
Expansion of Product_{m>=1} (1+x^m)^12.
Original entry on oeis.org
1, 12, 78, 376, 1509, 5316, 16966, 50088, 138738, 364284, 913824, 2203368, 5130999, 11585208, 25444278, 54504160, 114133296, 234091152, 471062830, 931388232, 1811754522, 3471186596, 6556994502, 12222818640, 22502406793, 40944396120, 73680871326, 131211105208, 231355524048, 404110659732
Offset: 0
G.f. = 1 + 12*x + 78*x^2 + 376*x^3 + 1509*x^4 + 5316*x^5 + 16966*x^6 + ...
G.f. = q + 12*q^3 + 78*q^5 + 376*q^7 + 1509*q^9 + 5316*q^11 + 16966*q^13 + ...
-
Coefficients(&*[(1+x^m)^12:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
N:= 50:
G:= mul(1+x^m,m=1..N+1)^12:
S:= series(G,x,N+1):
seq(coeff(S,x,n),n=0..N); # Robert Israel, Feb 26 2018
-
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16 / q)^(1/2) / (1 - m), {q, 0, n}]]; (* Michael Somos, Jul 22 2011 *)
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16 / q) /(1-m)^(1/2), {q, 0, 2 n}]]; (* Michael Somos, Jul 22 2011 *)
CoefficientList[QPochhammer[-1, q]^12/4096+O[q]^30, q] (* Jean-François Alcover, Nov 27 2015 *)
With[{nmax=50}, CoefficientList[Series[Product[(1+q^k)^12, {k,1,nmax}], {q, 0, nmax}],q]] (* G. C. Greubel, Feb 25 2018 *)
-
{a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 + x^k, 1 + x * O(x^n))^12, n))}; /* Michael Somos, Jul 16 2005 */
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^12, n))}; /* Michael Somos, Jul 16 2005 */
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^12)) \\ G. C. Greubel, Feb 25 2018
A022568
Expansion of Product_{m>=1} (1+x^m)^3.
Original entry on oeis.org
1, 3, 6, 13, 24, 42, 73, 120, 192, 302, 465, 702, 1046, 1536, 2226, 3195, 4536, 6378, 8896, 12306, 16896, 23045, 31224, 42048, 56310, 75000, 99384, 131072, 172071, 224910, 292774, 379608, 490338, 631104, 809472, 1034814, 1318707, 1675344, 2122176, 2680602, 3376728, 4242432, 5316562, 6646272
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- Mohammed L. Nadji and Moussa Ahmia, Congruences for L-regular tripartitions for L in {2, 3}, Integers (2024) Vol. 24, Art. No. A86. See p. 2.
-
Coefficients(&*[(1+x^m)^3:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^3,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
nmax = 50; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 3; poly[[3]] = 3; poly[[4]] = 1; Do[Do[Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];, {p, 1, 3}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Mar 31 2018 *)
-
x='x+O('x^51); Vec(prod(m=1, 50, (1 + x^m)^3)) \\ Indranil Ghosh, Apr 03 2017
A022569
Expansion of Product_{m>=1} (1+x^m)^4.
Original entry on oeis.org
1, 4, 10, 24, 51, 100, 190, 344, 601, 1024, 1702, 2768, 4422, 6948, 10752, 16424, 24782, 36972, 54602, 79872, 115805, 166540, 237664, 336720, 473856, 662596, 920934, 1272728, 1749407, 2392268, 3255410, 4409344, 5945730, 7983388, 10675712, 14220240, 18870672, 24951740, 32878114
Offset: 0
G.f. = 1 + 4*x + 10*x^2 + 24*x^3 + 51*x^4 + 100*x^5 + 190*x^6 + 344*x^7 + ...
G.f. = q + 4*q^7 + 10*q^13 + 24*q^19 + 51*q^25 + 100*q^31 + 190*q^37 + 344*q^43 + ...
-
Coefficients(&*[(1+x^m)^4:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
-
a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^-4, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^4, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^4, n))}; /* Michael Somos, Apr 26 2008 */
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^4)) \\ G. C. Greubel, Feb 26 2018
A022571
Expansion of Product_{m>=1} (1+x^m)^6.
Original entry on oeis.org
1, 6, 21, 62, 162, 384, 855, 1806, 3648, 7110, 13434, 24702, 44361, 78006, 134592, 228302, 381300, 627840, 1020394, 1638528, 2601849, 4088780, 6363354, 9813504, 15005458, 22760262, 34261248, 51204222, 76005906, 112092438, 164296989, 239404860, 346898496, 499971968, 716906394
Offset: 0
- A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", New York, Gordon and Breach Science Publishers, 1986-1992, p. 755, Eq. 6.2.2.2. MR0874986 (88f:00013)
-
Coefficients(&*[(1+x^m)^6:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^6,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
a(n)=if(n<0, 0, polcoeff( prod(k=1,n, 1+x^k, 1+x*O(x^n))^6, n)) /* Michael Somos, Jul 09 2005 */
A022573
Expansion of Product_{m>=1} (1+x^m)^8.
Original entry on oeis.org
1, 8, 36, 128, 394, 1088, 2776, 6656, 15155, 33056, 69508, 141568, 280382, 541696, 1023512, 1895424, 3446617, 6163536, 10854400, 18846592, 32296742, 54673920, 91506000, 151523840, 248403014, 403396288, 649286724, 1036287744, 1640796160, 2578305024, 4022351720, 6232177664, 9592906446
Offset: 0
G.f. = 1 + 8*x + 36*x^2 + 128*x^3 + 394*x^4 + 1088*x^5 + 2776*x^6 + ...
G.f. = q + 8*q^4 + 36*q^7 + 128*q^10 + 394*q^13 + 1088*q^16 + 2776*q^19 + ...
-
Coefficients(&*[(1+x^m)^8:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
-
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^8, {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
With[{nmax=50}, CoefficientList[Series[Product[(1+q^k)^8, {k,1,nmax}], {q, 0, nmax}],q]] (* G. C. Greubel, Feb 26 2018 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^8, n))}; /* Michael Somos, May 29 2004 */
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^8)) \\ G. C. Greubel, Feb 26 2018
A022596
Expansion of Product_{m>=1} (1+q^m)^32.
Original entry on oeis.org
1, 32, 528, 6016, 53384, 393920, 2517824, 14329600, 74059812, 352722720, 1565583648, 6533812352, 25823152256, 97218393280, 350348856704, 1213526698240, 4054279504266, 13103911398400, 41081428394096, 125210147216000, 371754750363712, 1077136199182976, 3050503922469440
Offset: 0
-
Coefficients(&*[(1+x^m)^32:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Mar 20 2018
-
nmax=50; CoefficientList[Series[Product[(1+q^m)^32,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^32)) \\ G. C. Greubel, Mar 20 2018
Showing 1-10 of 34 results.
Comments