cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359670 Triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) satisfying y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 21, 12, 1, 14, 62, 68, 20, 1, 24, 162, 284, 170, 30, 1, 40, 384, 998, 970, 360, 42, 1, 64, 855, 3092, 4410, 2720, 679, 56, 1, 100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1, 154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1, 232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Comments

Related identity: 0 = Sum_{-oo..+oo} (-1)^n * x^n * (y + x^n)^n, which holds formally for all y.
T(n,0) = A015128(n), the number of overpartitions of n, for n >= 0.
T(n+1,1) = A022571(n), the coefficient of x^n in Product_{m>=1} (1 + x^m)^6, for n >= 0.
A359711(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A359712(n) = Sum_{k=0..n} T(n,k)*2^k for n >= 0.
A359713(n) = Sum_{k=0..n} T(n,k)*3^k for n >= 0.
A363104(n) = Sum_{k=0..n} T(n,k)*4^k for n >= 0.
A363105(n) = Sum_{k=0..n} T(n,k)*5^k for n >= 0.
A359714(n) = T(2*n,n) for n >= 0 (central terms).
A359715(n) = T(n+2,2) for n >= 0.
A359718(n) = T(n+3,3) for n >= 0.
A363142(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0. - Paul D. Hanna, May 18 2023
From Paul D. Hanna, May 20 2023: (Start)
A363182(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 2^(n-2*k) for n >= 0.
A363183(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 3^(n-2*k) for n >= 0.
A363184(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 4^(n-2*k) for n >= 0.
A363185(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 5^(n-2*k) for n >= 0. (End)

Examples

			G.f.: A(x,y) = 1 + x*(2 + y) + x^2*(4 + 6*y + y^2) + x^3*(8 + 21*y + 12*y^2 + y^3) + x^4*(14 + 62*y + 68*y^2 + 20*y^3 + y^4) + x^5*(24 + 162*y + 284*y^2 + 170*y^3 + 30*y^4 + y^5) + x^6*(40 + 384*y + 998*y^2 + 970*y^3 + 360*y^4 + 42*y^5 + y^6) + x^7*(64 + 855*y + 3092*y^2 + 4410*y^3 + 2720*y^4 + 679*y^5 + 56*y^6 + y^7) + x^8*(100 + 1806*y + 8724*y^2 + 17172*y^3 + 15627*y^4 + 6608*y^5 + 1176*y^6 + 72*y^7 + y^8) + x^9*(154 + 3648*y + 22904*y^2 + 59545*y^3 + 74682*y^4 + 47089*y^5 + 14392*y^6 + 1908*y^7 + 90*y^8 + y^9) + x^10*(232 + 7110*y + 56679*y^2 + 188700*y^3 + 311530*y^4 + 271698*y^5 + 125160*y^6 + 28764*y^7 + 2940*y^8 + 110*y^9 + y^10) + ...
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for n >= 0, k = 0..n, begins
[1];
[2, 1];
[4, 6, 1];
[8, 21, 12, 1];
[14, 62, 68, 20, 1];
[24, 162, 284, 170, 30, 1];
[40, 384, 998, 970, 360, 42, 1];
[64, 855, 3092, 4410, 2720, 679, 56, 1];
[100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1];
[154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1];
[232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1];
[344, 13434, 133516, 556085, 1169100, 1342684, 860664, 300888, 53640, 4345, 132, 1];
[504, 24702, 301664, 1542640, 4029237, 5884160, 4980320, 2438712, 666240, 94490, 6204, 156, 1];
[728, 44361, 657368, 4065868, 12940766, 23411339, 25215416, 16367874, 6302148, 1377464, 158708, 8606, 182, 1];
[1040, 78006, 1387854, 10253720, 39153924, 85994062, 114672768, 94919382, 48660900, 15071628, 2687454, 256022, 11648, 210, 1]; ...
RELATED SERIES.
Given g.f. F(x) of A361770, where
F(x) = 1 + 3*x + 14*x^2 + 80*x^3 + 510*x^4 + 3498*x^5 + 25145*x^6 + 186972*x^7 + 1426159*x^8 + 11096944*x^9 + 87736474*x^10 + ... + A361770(n)*x^n + ...
then
(1) F(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * F(x)^k,
(2) F(x) = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^2 + x^(n-1))^(n+1).
Given g.f. G(x) of A363135, where
G(x) = 1 + 3*x + 17*x^2 + 133*x^3 + 1201*x^4 + 11796*x^5 + 122192*x^6 + 1314266*x^7 + 14536760*x^8 + 164299909*x^9 + ... + A363135(n)*x^n + ...
then
(1) G(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * G(x)^(2*k),
(2) G(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^3 + x^(n-1))^(n+1).
		

Crossrefs

Cf. A359711 (row sums), A359712 (y=2), A359713 (y=3), A363104(y=4), A363105 (y=5).
Cf. A359714 (central terms), A359715 (column 2), A359718 (column 3).

Programs

  • PARI
    {T(n,k) = my(A=1); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( polcoeff( A,n,x),k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))
    
  • PARI
    {T(n,k) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); polcoeff( A[n+1],k,y)}
    for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n*y^k may be described as follows.
(1) y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).
(2) x*y = Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^(n+1).
(3) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n-1).
(4) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^n ].
(5) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^(n+1))^n ].
From Paul D. Hanna, May 18 2023: (Start)
(6) y = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (y*A(x,y) + x^n)^n.
(7) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (y*A(x,y) + x^n)^n ].
(8) x*y = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (y*A(x,y) + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^n. (End)

A339338 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^6.

Original entry on oeis.org

1, 6, 6, 21, 6, 42, 6, 62, 21, 42, 6, 168, 6, 42, 42, 162, 6, 168, 6, 168, 42, 42, 6, 540, 21, 42, 62, 168, 6, 330, 6, 384, 42, 42, 42, 750, 6, 42, 42, 540, 6, 330, 6, 168, 168, 42, 6, 1512, 21, 168, 42, 168, 6, 540, 42, 540, 42, 42, 6, 1464, 6, 42, 168, 855, 42, 330
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2020

Keywords

Crossrefs

Formula

a(p^k) = A022571(k) for prime p.

A022601 Expansion of Product_{m>=1} (1+q^m)^(-6).

Original entry on oeis.org

1, -6, 15, -26, 51, -102, 172, -276, 453, -728, 1128, -1698, 2539, -3780, 5505, -7882, 11238, -15918, 22259, -30810, 42438, -58110, 78909, -106392, 142770, -190698, 253179, -334266, 439581, -575784, 750613, -974316, 1260336, -1624702, 2086530, -2670162
Offset: 0

Views

Author

Keywords

Comments

McKay-Thompson series of class 8F for the Monster group.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 6*x + 15*x^2 - 26*x^3 + 51*x^4 - 102*x^5 + 172*x^6 - 276*x^7 + ...
T8F = 1/q - 6*q^3 + 15*q^7 - 26*q^11 + 51*q^15 - 102*q^19 + 172*q^23 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^6, {x, 0, n}]; (* Michael Somos, Jul 01 2014 *)
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^6, n))}; /* Michael Somos, Jul 01 2014 */

Formula

Expansion of chi(-x)^6 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Jul 01 2014
Expansion of q^(1/4) * 2 * k'(q) / k(q)^(1/2) in powers of q where k() is the elliptic modulus. - Michael Somos, Jul 01 2014
Expansion of q^(1/4) * (eta(q) / eta(q^2))^6 in powers of q. - Michael Somos, Jul 01 2014
Euler transform of period 2 sequence [ -6, 0, ...]. - Michael Somos, Jul 01 2014
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) - 3*u*v * (21 + 6*u*v). - Michael Somos, Jul 01 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 8 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A022571. - Michael Somos, Jul 01 2014
Convolution inverse of A022571. Convolution sixth power of A081362. - Michael Somos, Jul 01 2014
a(n) = (-1)^n * A112150(n) = A058088(2*n) = A112145(2*n). - Michael Somos, Jul 01 2014
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(6/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-6*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A022600 Expansion of Product_{m>=1} (1+q^m)^(-5).

Original entry on oeis.org

1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k: A022627 (k=-32), A022626 (k=-31), A022625 (k=-30), A022624 (k=-29), A022623 (k=-28), A022622 (k=-27), A022621 (k=-26), A022620 (k=-25), A007191 (k=-24), A022618 (k=-23), A022617 (k=-22), A022616 (k=-21), A022615 (k=-20), A022614 (k=-19), A022613 (k=-18), A022612 (k=-17), A022611 (k=-16), A022610 (k=-15), A022609 (k=-14), A022608 (k=-13), A007249 (k=-12), A022606 (k=-11), A022605 (k=-10), A022604 (k=-9), A007259 (k=-8), A022602 (k=-7), A022601 (k=-6), this sequence (k=-5), A022599 (k=-4), A022598 (k=-3), A022597 (k=-2), A081362 (k=-1), A000009 (k=1), A022567 (k=2), A022568 (k=3), A022569 (k=4), A022570 (k=5), A022571 (k=6), A022572 (k=7), A022573 (k=8), A022574 (k=9), A022575 (k=10), A022576 (k=11), A022577 (k=12), A022578 (k=13), A022579 (k=14), A022580 (k=15), A022581 (k=16), A022582 (k=17), A022583 (k=18), A022584 (k=19), A022585 (k=20), A022586 (k=21), A022587 (k=22), A022588 (k=23), A014103 (k=24), A022589 (k=25), A022590 (k=26), A022591 (k=27), A022592 (k=28), A022593 (k=29), A022594 (k=30), A022595 (k=31), A022596 (k=32), A025233 (k=48).
Column k=5 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(n) ~ (-1)^n * 5^(1/4) * exp(Pi*sqrt(5*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A143894 Expansion of (chi(q)^5 * chi(-q))^2 in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 8, 26, 48, 79, 168, 326, 496, 755, 1296, 2106, 3072, 4460, 6840, 10284, 14448, 20165, 29184, 41640, 56880, 77352, 107472, 147902, 197616, 263019, 354888, 475516, 624048, 816065, 1076736, 1413142, 1826416, 2353446, 3050400, 3936754, 5022720
Offset: 0

Views

Author

Michael Somos, Sep 04 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x + 26*x^2 + 48*x^3 + 79*x^4 + 168*x^5 + 326*x^6 + 496*x^7 + ...
G.f. = 1/q + 8*q + 26*q^3 + 48*q^5 + 79*q^7 + 168*q^9 + 326*q^11 + 496*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^9 / (QPochhammer[ x]^4 QPochhammer[ x^4]^5))^2, {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)^4 / (1 + x^(2*k))^5)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^9 / (eta(x + A)^4 * eta(x^4 + A)^5))^2, n))};

Formula

Expansion of q^(1/2) * (eta(q^2)^9 / (eta(q)^4 * eta(q^4)^5))^2 in powers of q.
Euler transform of period 4 sequence [ 8, -10, 8, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143895.
G.f.: (Product_{k>0} (1 + x^k)^4 / (1 + x^(2*k))^5)^2.
a(2*n) = A052241(n). a(2*n + 1) = 8 * A022571(n).
a(n) ~ exp(sqrt(n)*Pi) / (sqrt(2) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Showing 1-5 of 5 results.