cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341244 Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^5.

Original entry on oeis.org

1, 0, 5, 5, 15, 25, 45, 80, 125, 210, 321, 500, 745, 1110, 1620, 2326, 3315, 4660, 6500, 8955, 12261, 16640, 22425, 29990, 39870, 52701, 69230, 90460, 117620, 152225, 196066, 251455, 321195, 408710, 518060, 654317, 823690, 1033535, 1292690, 1611970, 2004462, 2485605
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..46);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax = 46; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^5, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^5.

A339720 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^5.

Original entry on oeis.org

1, -5, -5, 10, -5, 20, -5, -15, 10, 20, -5, -30, -5, 20, 20, 30, -5, -30, -5, -30, 20, 20, -5, 45, 10, 20, -15, -30, -5, -55, -5, -56, 20, 20, 20, 35, -5, 20, 20, 45, -5, -55, -5, -30, -30, 20, -5, -105, 10, -30, 20, -30, -5, 45, 20, 45, 20, 20, -5, 45, -5, 20, -30, 85, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339337(n/d) * a(d).
a(p^k) = A022600(k) for prime p.

A025233 Expansion of Product_{m>=1} (1 + q^m)^48.

Original entry on oeis.org

1, 48, 1176, 19648, 252204, 2655456, 23901760, 189208704, 1344644814, 8713158928, 52107076128, 290374290624, 1519725061816, 7518508799904, 35352238216704, 158716136933504, 683059486979301, 2827559773199856
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + x^k)^48, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

Formula

a(n) ~ exp(4*Pi*sqrt(n)) / (2^(49/2) * n^(3/4)) * (1 + (4*Pi - 3/(32*Pi))/sqrt(n)). - Vaclav Kotesovec, Nov 10 2017
Showing 1-3 of 3 results.