cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A341245 Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^6.

Original entry on oeis.org

1, 0, 6, 6, 21, 36, 71, 132, 222, 392, 633, 1038, 1629, 2544, 3885, 5842, 8691, 12738, 18494, 26520, 37722, 53132, 74235, 102882, 141579, 193506, 262713, 354552, 475749, 634932, 842922, 1113630, 1464450, 1917254, 2499330, 3244998, 4196966, 5408004, 6943632, 8884996
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..45);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax = 45; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^6, {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^6.

A339721 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^6.

Original entry on oeis.org

1, -6, -6, 15, -6, 30, -6, -26, 15, 30, -6, -60, -6, 30, 30, 51, -6, -60, -6, -60, 30, 30, -6, 96, 15, 30, -26, -60, -6, -114, -6, -102, 30, 30, 30, 96, -6, 30, 30, 96, -6, -114, -6, -60, -60, 30, -6, -210, 15, -60, 30, -60, -6, 96, 30, 96, 30, 30, -6, 156, -6, 30, -60, 172, 30
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339338(n/d) * a(d).
a(p^k) = A022601(k) for prime p.

A022600 Expansion of Product_{m>=1} (1+q^m)^(-5).

Original entry on oeis.org

1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k: A022627 (k=-32), A022626 (k=-31), A022625 (k=-30), A022624 (k=-29), A022623 (k=-28), A022622 (k=-27), A022621 (k=-26), A022620 (k=-25), A007191 (k=-24), A022618 (k=-23), A022617 (k=-22), A022616 (k=-21), A022615 (k=-20), A022614 (k=-19), A022613 (k=-18), A022612 (k=-17), A022611 (k=-16), A022610 (k=-15), A022609 (k=-14), A022608 (k=-13), A007249 (k=-12), A022606 (k=-11), A022605 (k=-10), A022604 (k=-9), A007259 (k=-8), A022602 (k=-7), A022601 (k=-6), this sequence (k=-5), A022599 (k=-4), A022598 (k=-3), A022597 (k=-2), A081362 (k=-1), A000009 (k=1), A022567 (k=2), A022568 (k=3), A022569 (k=4), A022570 (k=5), A022571 (k=6), A022572 (k=7), A022573 (k=8), A022574 (k=9), A022575 (k=10), A022576 (k=11), A022577 (k=12), A022578 (k=13), A022579 (k=14), A022580 (k=15), A022581 (k=16), A022582 (k=17), A022583 (k=18), A022584 (k=19), A022585 (k=20), A022586 (k=21), A022587 (k=22), A022588 (k=23), A014103 (k=24), A022589 (k=25), A022590 (k=26), A022591 (k=27), A022592 (k=28), A022593 (k=29), A022594 (k=30), A022595 (k=31), A022596 (k=32), A025233 (k=48).
Column k=5 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(n) ~ (-1)^n * 5^(1/4) * exp(Pi*sqrt(5*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A112150 McKay-Thompson series of class 16a for the Monster group.

Original entry on oeis.org

1, 6, 15, 26, 51, 102, 172, 276, 453, 728, 1128, 1698, 2539, 3780, 5505, 7882, 11238, 15918, 22259, 30810, 42438, 58110, 78909, 106392, 142770, 190698, 253179, 334266, 439581, 575784, 750613, 974316, 1260336, 1624702, 2086530, 2670162, 3406695, 4333590
Offset: 0

Views

Author

Michael Somos, Aug 28 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 6*x + 15*x^2 + 26*x^3 + 51*x^4 + 102*x^5 + 172*x^6 + 276*x^7 + ...
T16a = 1/q + 6*q^3 + 15*q^7 + 26*q^11 + 51*q^15 + 102*q^19 + 172*x^23 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^6, {x, 0, n}]; (* Michael Somos, Jul 03 2014 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^6, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^6, n))}; /* Michael Somos, Jul 03 2014 */

Formula

Expansion of chi(x)^6 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Jul 03 2014
Expansion of q^(1/4) * 2 * (k(q) * k'(q))^(-1/2) in powers of q where k() is the elliptic modulus. - Michael Somos, Jul 03 2014
Expansion of q^(1/4) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^6 in powers of q. - Michael Somos, Jul 03 2014
Euler transform of period 4 sequence [ 6, -6, 6, 0, ...]. - Michael Somos, Jul 03 2014
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (v^3 - u) * (u^3 - v) - 9*u*v * (-7 + 2*u*v). - Michael Somos, Jul 03 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 03 2014
G.f.: Product_{k>0} (1 + (-x)^k)^-6 = Product_{k>0} (1 + x^(2*k - 1))^6. - Michael Somos, Jul 03 2014
Convolution square is A112142. Convolution square of A107635. - Michael Somos, Jul 03 2014
a(n) = (-1)^n * A022601(n). - Michael Somos, Jul 03 2014
a(n) ~ exp(Pi*sqrt(n)) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
G.f.: exp(6*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
Showing 1-4 of 4 results.