A286335
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)^k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 2, 0, 1, 4, 6, 6, 2, 0, 1, 5, 10, 13, 9, 3, 0, 1, 6, 15, 24, 24, 14, 4, 0, 1, 7, 21, 40, 51, 42, 22, 5, 0, 1, 8, 28, 62, 95, 100, 73, 32, 6, 0, 1, 9, 36, 91, 162, 206, 190, 120, 46, 8, 0, 1, 10, 45, 128, 259, 384, 425, 344, 192, 66, 10, 0
Offset: 0
A(3,2) = 6 because we have [3], [3'], [2, 1], [2', 1], [2, 1'] and [2', 1'] (partitions of 3 into distinct parts with 2 types of each part).
Also A(3,2) = 6 because we have [3], [3'], [1, 1, 1], [1, 1, 1'], [1, 1', 1'] and [1', 1', 1'] (partitions of 3 into odd parts with 2 types of each part).
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 3, 6, 10, 15, ...
0, 2, 6, 13, 24, 40, ...
0, 2, 9, 24, 51, 95, ...
0, 3, 14, 42, 100, 206, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..n/i)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 29 2019
-
Table[Function[k, SeriesCoefficient[Product[(1 + x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
A022597
Expansion of Product_{m >= 1} (1 + q^m)^(-2).
Original entry on oeis.org
1, -2, 1, -2, 4, -4, 5, -6, 9, -12, 13, -16, 21, -26, 29, -36, 46, -54, 62, -74, 90, -106, 122, -142, 171, -200, 227, -264, 311, -358, 408, -470, 545, -626, 709, -810, 933, -1062, 1198, -1362, 1555, -1760, 1980, -2238, 2536, -2858, 3205, -3602, 4063, -4560, 5092, -5704, 6400, -7150, 7966
Offset: 0
G.f. = 1 - 2*x + x^2 - 2*x^3 + 4*x^4 - 4*x^5 + 5*x^6 - 6*x^7 + 9*x^8 + ...
T24J = 1/q - 2*q^11 + q^23 - 2*q^35 + 4*q^47 - 4*q^59 + 5*q^71 - 6*q^83 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- D. Foata and G.-N. Han, Jacobi and Watson Identities Combinatorially Revisited
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 13.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
Cf.
A089814 (expansion of Product_{k>=1}(1-q^(10k-5))^2).
-
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, n}]^-2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^2, n))}; /* Michael Somos, Sep 10 2005 */
A299208
Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + x^k)).
Original entry on oeis.org
1, 1, 0, -1, -2, -1, 1, 3, 3, 1, -3, -6, -5, 1, 9, 12, 5, -9, -20, -18, 1, 26, 38, 21, -21, -61, -62, -9, 72, 120, 81, -44, -177, -205, -64, 186, 366, 293, -63, -496, -657, -304, 445, 1084, 1014, 33, -1341, -2053, -1238, 959, 3132, 3378, 770, -3474, -6260, -4619, 1656, 8809, 10929, 4306, -8520
Offset: 0
-
nmax = 60; CoefficientList[Series[1/(1 - x Product[1/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
A007249
McKay-Thompson series of class 4D for the Monster group.
Original entry on oeis.org
1, -12, 66, -232, 639, -1596, 3774, -8328, 17283, -34520, 66882, -125568, 229244, -409236, 716412, -1231048, 2079237, -3459264, 5677832, -9200232, 14729592, -23325752, 36567222, -56778888, 87369483, -133315692
Offset: 0
1 - 12*x + 66*x^2 - 232*x^3 + 639*x^4 - 1596*x^5 + 3774*x^6 + ...
T4D = 1/q - 12*q + 66*q^3 - 232*q^5 + 639*q^7 - 1596*q^9 + 3774*q^11 - ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
-
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m) / (m / 16 / q)^(1/2), {q, 0, n}]] (* Michael Somos, Jul 22 2011 *)
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m)^(1/2) / (m / 16 / q), {q, 0, 2 n}]] (* Michael Somos, Jul 22 2011 *)
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
QP = QPochhammer; s = (QP[q]/QP[q^2])^12 + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015, adapted from PARI *)
eta[q_]:=q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(1/2)*(eta[q]/eta[q^2])^12, {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Feb 13 2018 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^12, n))} /* Michael Somos, Jul 22 2011 */
A007259
Expansion of Product_{m>=1} (1 + q^m)^(-8).
Original entry on oeis.org
1, -8, 28, -64, 134, -288, 568, -1024, 1809, -3152, 5316, -8704, 13990, -22208, 34696, -53248, 80724, -121240, 180068, -264448, 384940, -556064, 796760, -1132544, 1598789, -2243056, 3127360, -4333568, 5971922, -8188096, 11170160, -15163392, 20491033, -27572936
Offset: 0
1 - 8*x + 28*x^2 - 64*x^3 + 134*x^4 - 288*x^5 + 568*x^6 - 1024*x^7 + ...
T6F = 1/q - 8q^2 + 28q^5 - 64q^8 + 134q^11 - 288q^14 + 568q^17 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 118, Problem 24.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
-
a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^8, {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 - q^k, {k, 1, n, 2}]^8, {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^-8, {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^8, n))}
A022598
Expansion of Product_{m>=1} (1+q^m)^(-3).
Original entry on oeis.org
1, -3, 3, -4, 9, -12, 15, -21, 30, -43, 54, -69, 94, -123, 153, -193, 252, -318, 391, -486, 609, -754, 918, -1119, 1376, -1680, 2019, -2432, 2946, -3540, 4220, -5034, 6015, -7157, 8463, -9999, 11835, -13956, 16374, -19206, 22542, -26376, 30750, -35829, 41745
Offset: 0
G.f. = 1 - 3*x + 3*x^2 - 4*x^3 + 9*x^4 - 12*x^5 + 15*x^6 - 21*x^7 + 30*x^8 + ...
G.f. = 1/q - 3*q^7 + 3*q^15 - 4*q^23 + 9*q^31 - 12*q^39 + 15*q^47 - 21*q^55 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^3.
-
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[x^2])^3, {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^3, n))};
A022599
Expansion of Product_{m>=1} (1+q^m)^(-4).
Original entry on oeis.org
1, -4, 6, -8, 17, -28, 38, -56, 84, -124, 172, -232, 325, -448, 594, -784, 1049, -1388, 1796, -2320, 3005, -3864, 4912, -6216, 7877, -9940, 12430, -15488, 19309, -23972, 29580, -36408, 44766, -54876, 66978, -81536, 99150, -120272, 145374, -175344, 211242
Offset: 0
G.f. = 1 - 4*x + 6*x^2 - 8*x^3 + 17*x^4 - 28*x^5 + 38*x^6 - 56*x^7 + ...
T12J = 1/q - 4*q^5 + 6*q^11 - 8*q^17 + 17*q^23 - 28*q^29 + 38*q^35 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^4.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 13.
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
-4*irem(d, 2)*d, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 02 2014
-
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[x^2])^4, {x, 0, n}]; (* Michael Somos, Jul 05 2014 *)
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^4, n))};
A302017
Expansion of 1/(1 - x*Product_{k>=1} (1 + x^(2*k-1))).
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 21, 39, 73, 137, 257, 482, 903, 1693, 3173, 5948, 11149, 20899, 39174, 73430, 137641, 258002, 483614, 906513, 1699219, 3185111, 5970352, 11191163, 20977346, 39321116, 73705711, 138158128, 258971363, 485430483, 909918190, 1705601814, 3197075934, 5992778881, 11233201667
Offset: 0
Antidiagonal sums of absolute values of
A286352.
-
nmax = 38; CoefficientList[Series[1/(1 - x Product[(1 + x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 38; CoefficientList[Series[1/(1 - x QPochhammer[x^2]^2/(QPochhammer[x] QPochhammer[x^4])), {x, 0, nmax}], x]
A022601
Expansion of Product_{m>=1} (1+q^m)^(-6).
Original entry on oeis.org
1, -6, 15, -26, 51, -102, 172, -276, 453, -728, 1128, -1698, 2539, -3780, 5505, -7882, 11238, -15918, 22259, -30810, 42438, -58110, 78909, -106392, 142770, -190698, 253179, -334266, 439581, -575784, 750613, -974316, 1260336, -1624702, 2086530, -2670162
Offset: 0
G.f. = 1 - 6*x + 15*x^2 - 26*x^3 + 51*x^4 - 102*x^5 + 172*x^6 - 276*x^7 + ...
T8F = 1/q - 6*q^3 + 15*q^7 - 26*q^11 + 51*q^15 - 102*q^19 + 172*q^23 + ...
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
-
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^6, {x, 0, n}]; (* Michael Somos, Jul 01 2014 *)
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^6, n))}; /* Michael Somos, Jul 01 2014 */
A022600
Expansion of Product_{m>=1} (1+q^m)^(-5).
Original entry on oeis.org
1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0
Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k:
A022627 (k=-32),
A022626 (k=-31),
A022625 (k=-30),
A022624 (k=-29),
A022623 (k=-28),
A022622 (k=-27),
A022621 (k=-26),
A022620 (k=-25),
A007191 (k=-24),
A022618 (k=-23),
A022617 (k=-22),
A022616 (k=-21),
A022615 (k=-20),
A022614 (k=-19),
A022613 (k=-18),
A022612 (k=-17),
A022611 (k=-16),
A022610 (k=-15),
A022609 (k=-14),
A022608 (k=-13),
A007249 (k=-12),
A022606 (k=-11),
A022605 (k=-10),
A022604 (k=-9),
A007259 (k=-8),
A022602 (k=-7),
A022601 (k=-6), this sequence (k=-5),
A022599 (k=-4),
A022598 (k=-3),
A022597 (k=-2),
A081362 (k=-1),
A000009 (k=1),
A022567 (k=2),
A022568 (k=3),
A022569 (k=4),
A022570 (k=5),
A022571 (k=6),
A022572 (k=7),
A022573 (k=8),
A022574 (k=9),
A022575 (k=10),
A022576 (k=11),
A022577 (k=12),
A022578 (k=13),
A022579 (k=14),
A022580 (k=15),
A022581 (k=16),
A022582 (k=17),
A022583 (k=18),
A022584 (k=19),
A022585 (k=20),
A022586 (k=21),
A022587 (k=22),
A022588 (k=23),
A014103 (k=24),
A022589 (k=25),
A022590 (k=26),
A022591 (k=27),
A022592 (k=28),
A022593 (k=29),
A022594 (k=30),
A022595 (k=31),
A022596 (k=32),
A025233 (k=48).
-
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017
Showing 1-10 of 13 results.
Comments