A341243
Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^4.
Original entry on oeis.org
1, 0, 4, 4, 10, 16, 26, 44, 63, 100, 144, 212, 297, 420, 584, 796, 1081, 1452, 1940, 2556, 3355, 4372, 5668, 7288, 9327, 11892, 15076, 19012, 23884, 29904, 37276, 46284, 57276, 70680, 86918, 106528, 130220, 158784, 193054, 234076, 283178, 341824, 411616, 494512, 592933
Offset: 4
Cf.
A000700,
A001482,
A022599,
A112160,
A327382,
A338463,
A341222,
A341241,
A341244,
A341245,
A341246,
A341247,
A341251.
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 4):
seq(a(n), n=4..48); # Alois P. Heinz, Feb 07 2021
-
nmax = 48; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &
A339719
Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^4.
Original entry on oeis.org
1, -4, -4, 6, -4, 12, -4, -8, 6, 12, -4, -12, -4, 12, 12, 17, -4, -12, -4, -12, 12, 12, -4, 20, 6, 12, -8, -12, -4, -20, -4, -28, 12, 12, 12, 10, -4, 12, 12, 20, -4, -20, -4, -12, -12, 12, -4, -48, 6, -12, 12, -12, -4, 20, 12, 20, 12, 12, -4, 4, -4, 12, -12, 38, 12, -20, -4, -12, 12, -20
Offset: 1
A022569
Expansion of Product_{m>=1} (1+x^m)^4.
Original entry on oeis.org
1, 4, 10, 24, 51, 100, 190, 344, 601, 1024, 1702, 2768, 4422, 6948, 10752, 16424, 24782, 36972, 54602, 79872, 115805, 166540, 237664, 336720, 473856, 662596, 920934, 1272728, 1749407, 2392268, 3255410, 4409344, 5945730, 7983388, 10675712, 14220240, 18870672, 24951740, 32878114
Offset: 0
G.f. = 1 + 4*x + 10*x^2 + 24*x^3 + 51*x^4 + 100*x^5 + 190*x^6 + 344*x^7 + ...
G.f. = q + 4*q^7 + 10*q^13 + 24*q^19 + 51*q^25 + 100*q^31 + 190*q^37 + 344*q^43 + ...
-
Coefficients(&*[(1+x^m)^4:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
-
a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^-4, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^4, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^4, n))}; /* Michael Somos, Apr 26 2008 */
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^4)) \\ G. C. Greubel, Feb 26 2018
A022600
Expansion of Product_{m>=1} (1+q^m)^(-5).
Original entry on oeis.org
1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0
Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k:
A022627 (k=-32),
A022626 (k=-31),
A022625 (k=-30),
A022624 (k=-29),
A022623 (k=-28),
A022622 (k=-27),
A022621 (k=-26),
A022620 (k=-25),
A007191 (k=-24),
A022618 (k=-23),
A022617 (k=-22),
A022616 (k=-21),
A022615 (k=-20),
A022614 (k=-19),
A022613 (k=-18),
A022612 (k=-17),
A022611 (k=-16),
A022610 (k=-15),
A022609 (k=-14),
A022608 (k=-13),
A007249 (k=-12),
A022606 (k=-11),
A022605 (k=-10),
A022604 (k=-9),
A007259 (k=-8),
A022602 (k=-7),
A022601 (k=-6), this sequence (k=-5),
A022599 (k=-4),
A022598 (k=-3),
A022597 (k=-2),
A081362 (k=-1),
A000009 (k=1),
A022567 (k=2),
A022568 (k=3),
A022569 (k=4),
A022570 (k=5),
A022571 (k=6),
A022572 (k=7),
A022573 (k=8),
A022574 (k=9),
A022575 (k=10),
A022576 (k=11),
A022577 (k=12),
A022578 (k=13),
A022579 (k=14),
A022580 (k=15),
A022581 (k=16),
A022582 (k=17),
A022583 (k=18),
A022584 (k=19),
A022585 (k=20),
A022586 (k=21),
A022587 (k=22),
A022588 (k=23),
A014103 (k=24),
A022589 (k=25),
A022590 (k=26),
A022591 (k=27),
A022592 (k=28),
A022593 (k=29),
A022594 (k=30),
A022595 (k=31),
A022596 (k=32),
A025233 (k=48).
-
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017
A382344
Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 4 kinds.
Original entry on oeis.org
1, 0, 4, 0, 4, 10, 0, 4, 16, 20, 0, 4, 26, 40, 35, 0, 4, 32, 80, 80, 56, 0, 4, 42, 124, 180, 140, 84, 0, 4, 48, 184, 320, 340, 224, 120, 0, 4, 58, 248, 535, 660, 574, 336, 165, 0, 4, 64, 332, 800, 1200, 1184, 896, 480, 220, 0, 4, 74, 416, 1176, 1956, 2284, 1932, 1320, 660, 286
Offset: 0
Triangle starts:
0 : [1]
1 : [0, 4]
2 : [0, 4, 10]
3 : [0, 4, 16, 20]
4 : [0, 4, 26, 40, 35]
5 : [0, 4, 32, 80, 80, 56]
6 : [0, 4, 42, 124, 180, 140, 84]
7 : [0, 4, 48, 184, 320, 340, 224, 120]
8 : [0, 4, 58, 248, 535, 660, 574, 336, 165]
9 : [0, 4, 64, 332, 800, 1200, 1184, 896, 480, 220]
10 : [0, 4, 74, 416, 1176, 1956, 2284, 1932, 1320, 660, 286]
...
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(x^j*b(n-i*j, min(n-i*j, i-1))*binomial(j+3, 3), j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 28 2025
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*Binomial[j+3, 3], {j, 0, n/i}]]]];
T[n_, k_] := Coefficient[b[n, n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Aug 07 2025, after Alois P. Heinz *)
-
from sympy import binomial
from sympy.utilities.iterables import partitions
kinds = 4 - 1 # the number of part kinds - 1
def t_row( n):
if n == 0 : return [1]
t = list( [0] * n)
for p in partitions( n):
fact = 1
s = 0
for k in p :
s += p[k]
fact *= binomial( kinds + p[k], kinds)
if s > 0 :
t[s - 1] += fact
return [0] + t
Showing 1-5 of 5 results.
Comments