cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A341243 Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^4.

Original entry on oeis.org

1, 0, 4, 4, 10, 16, 26, 44, 63, 100, 144, 212, 297, 420, 584, 796, 1081, 1452, 1940, 2556, 3355, 4372, 5668, 7288, 9327, 11892, 15076, 19012, 23884, 29904, 37276, 46284, 57276, 70680, 86918, 106528, 130220, 158784, 193054, 234076, 283178, 341824, 411616, 494512, 592933
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..48);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax = 48; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^4.
a(n) ~ A112160(n). - Vaclav Kotesovec, Feb 20 2021

A339719 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^4.

Original entry on oeis.org

1, -4, -4, 6, -4, 12, -4, -8, 6, 12, -4, -12, -4, 12, 12, 17, -4, -12, -4, -12, 12, 12, -4, 20, 6, 12, -8, -12, -4, -20, -4, -28, 12, 12, 12, 10, -4, 12, 12, 20, -4, -20, -4, -12, -12, 12, -4, -48, 6, -12, 12, -12, -4, 20, 12, 20, 12, 12, -4, 4, -4, 12, -12, 38, 12, -20, -4, -12, 12, -20
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339336(n/d) * a(d).
a(p^k) = A022599(k) for prime p.

A022569 Expansion of Product_{m>=1} (1+x^m)^4.

Original entry on oeis.org

1, 4, 10, 24, 51, 100, 190, 344, 601, 1024, 1702, 2768, 4422, 6948, 10752, 16424, 24782, 36972, 54602, 79872, 115805, 166540, 237664, 336720, 473856, 662596, 920934, 1272728, 1749407, 2392268, 3255410, 4409344, 5945730, 7983388, 10675712, 14220240, 18870672, 24951740, 32878114
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 10*x^2 + 24*x^3 + 51*x^4 + 100*x^5 + 190*x^6 + 344*x^7 + ...
G.f. = q + 4*q^7 + 10*q^13 + 24*q^19 + 51*q^25 + 100*q^31 + 190*q^37 + 344*q^43 + ...
		

Crossrefs

Column k=4 of A286335.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^4:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^-4, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^4, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^4, n))}; /* Michael Somos, Apr 26 2008 */
    
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^4)) \\ G. C. Greubel, Feb 26 2018
    

Formula

Expansion of q^(-1/6) * (eta(q^2) / eta(q))^4 in powers of q.
Expansion of chi(-q)^(-4) in powers of q where chi() is a Ramanujan theta function.
Euler transform of period 2 sequence [ 4, 0, ...]. - Michael Somos, Apr 26 2008
Given G.f. A(x) then B(q) = (A(q^6) * q)^2 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v * (1 + 16 * u * v) - u^2. - Michael Somos, Apr 26 2008
Given G.f. A(x) then B(x) = A(q^6) * q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v * (u^2 - v) - 4 * w^2 * (u^2 + v). - Michael Somos, Apr 26 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A022599.
G.f.: Product_{k>0} (1 + x^k)^4.
Convolution inverse of A022599.
G.f.: T(0)/x, where T(k) = 1 - 1/(1 - (1+(x)^(k+1))^4/((1+(x)^(k+1))^4 - 1/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2013
a(n) ~ exp(2 * Pi * sqrt(n/3)) / (8 * 3^(1/4) * n^(3/4)) * (1 + (Pi/(6*sqrt(3)) - 3*sqrt(3)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Mar 05 2015, extended Jan 16 2017
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(4*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A022600 Expansion of Product_{m>=1} (1+q^m)^(-5).

Original entry on oeis.org

1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k: A022627 (k=-32), A022626 (k=-31), A022625 (k=-30), A022624 (k=-29), A022623 (k=-28), A022622 (k=-27), A022621 (k=-26), A022620 (k=-25), A007191 (k=-24), A022618 (k=-23), A022617 (k=-22), A022616 (k=-21), A022615 (k=-20), A022614 (k=-19), A022613 (k=-18), A022612 (k=-17), A022611 (k=-16), A022610 (k=-15), A022609 (k=-14), A022608 (k=-13), A007249 (k=-12), A022606 (k=-11), A022605 (k=-10), A022604 (k=-9), A007259 (k=-8), A022602 (k=-7), A022601 (k=-6), this sequence (k=-5), A022599 (k=-4), A022598 (k=-3), A022597 (k=-2), A081362 (k=-1), A000009 (k=1), A022567 (k=2), A022568 (k=3), A022569 (k=4), A022570 (k=5), A022571 (k=6), A022572 (k=7), A022573 (k=8), A022574 (k=9), A022575 (k=10), A022576 (k=11), A022577 (k=12), A022578 (k=13), A022579 (k=14), A022580 (k=15), A022581 (k=16), A022582 (k=17), A022583 (k=18), A022584 (k=19), A022585 (k=20), A022586 (k=21), A022587 (k=22), A022588 (k=23), A014103 (k=24), A022589 (k=25), A022590 (k=26), A022591 (k=27), A022592 (k=28), A022593 (k=29), A022594 (k=30), A022595 (k=31), A022596 (k=32), A025233 (k=48).
Column k=5 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(n) ~ (-1)^n * 5^(1/4) * exp(Pi*sqrt(5*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A382344 Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 4 kinds.

Original entry on oeis.org

1, 0, 4, 0, 4, 10, 0, 4, 16, 20, 0, 4, 26, 40, 35, 0, 4, 32, 80, 80, 56, 0, 4, 42, 124, 180, 140, 84, 0, 4, 48, 184, 320, 340, 224, 120, 0, 4, 58, 248, 535, 660, 574, 336, 165, 0, 4, 64, 332, 800, 1200, 1184, 896, 480, 220, 0, 4, 74, 416, 1176, 1956, 2284, 1932, 1320, 660, 286
Offset: 0

Views

Author

Peter Dolland, Mar 28 2025

Keywords

Examples

			Triangle starts:
 0 : [1]
 1 : [0, 4]
 2 : [0, 4, 10]
 3 : [0, 4, 16,  20]
 4 : [0, 4, 26,  40,   35]
 5 : [0, 4, 32,  80,   80,   56]
 6 : [0, 4, 42, 124,  180,  140,   84]
 7 : [0, 4, 48, 184,  320,  340,  224,  120]
 8 : [0, 4, 58, 248,  535,  660,  574,  336,  165]
 9 : [0, 4, 64, 332,  800, 1200, 1184,  896,  480, 220]
10 : [0, 4, 74, 416, 1176, 1956, 2284, 1932, 1320, 660, 286]
...
		

Crossrefs

Main diagonal gives A000292(n+1).
Row sums give A023003.
Cf. A008284 (1-kind), A382342 (2-kind), A382343 (3-kind).

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*binomial(j+3, 3), j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 28 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*Binomial[j+3, 3], {j, 0, n/i}]]]];
    T[n_, k_] := Coefficient[b[n, n], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Aug 07 2025, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    kinds = 4 - 1   # the number of part kinds - 1
    def t_row( n):
        if n == 0 : return [1]
        t = list( [0] * n)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( kinds + p[k], kinds)
            if s > 0 :
                t[s - 1] += fact
        return [0] + t

Formula

T(n,n) = binomial(n + 3, 3) = A000292(n + 1).
T(n,1) = 4 for n >= 1.
T(n,k) = A382041(n,k) - A382041(n,k-1) for 1 <= k <= n.
Sum_{k=0..n} (-1)^k * T(n,k) = A022599(n). - Alois P. Heinz, Mar 28 2025
Showing 1-5 of 5 results.