cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Peter Dolland

Peter Dolland's wiki page.

Peter Dolland has authored 50 sequences. Here are the ten most recent ones:

A384105 Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, exactly k of which are self referencing, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 4, 3, 16, 36, 36, 16, 218, 752, 1104, 752, 218, 9608, 45960, 90416, 90416, 45960, 9608, 1540944, 9133760, 22692704, 30194176, 22692704, 9133760, 1540944, 882033440, 6154473664, 18425858880, 30679088480, 30679088480, 18425858880, 6154473664, 882033440
Offset: 0

Author

Peter Dolland, May 19 2025

Keywords

Comments

Also the number of essentially different simple digraphs on a node set A of size n with a distinguished subset B of size k, where elements are indistinguishable within B and within A \ B.

Examples

			Triangle starts:
            1
            1,              1
            3,              4,              3
           16,             36,             36,              16
          218,            752,           1104,             752,             218
         9608,          45960,          90416,           90416,           45960, ...
      1540944,        9133760,       22692704,        30194176,        22692704, ...
    882033440,     6154473664,    18425858880,     30679088480,     30679088480, ...
1793359192848, 14334221970688, 50138592081152, 100240050239744, 125284653092864, ...
...
		

Crossrefs

Cf. A000273 (edge cases), A000595 (row sums), A353996, A328874, A383617.

Formula

T(n,k) = T(n,n-k).
T(n,0) = T(n,n) = A000273(n).
T(n,1) = T(n,n-1) = A353996(n+1) = A329874(n,4).
Sum_{k=0..n} T(n,k) = A000595(n).

A383353 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n 2-colored objects are distributed into k containers of two kinds. Containers may be left empty.

Original entry on oeis.org

1, 2, 0, 3, 4, 0, 4, 8, 6, 0, 5, 12, 22, 8, 0, 6, 16, 38, 40, 10, 0, 7, 20, 54, 92, 73, 12, 0, 8, 24, 70, 144, 196, 112, 14, 0, 9, 28, 86, 196, 354, 376, 172, 16, 0, 10, 32, 102, 248, 512, 760, 678, 240, 18, 0, 11, 36, 118, 300, 670, 1200, 1554, 1136, 335, 20, 0
Offset: 0

Author

Peter Dolland, Apr 24 2025

Keywords

Examples

			Array starts:
 0 : [1,  2,   3,    4,     5,     6,     7,      8,      9,     10,     11, ...]
 1 : [0,  4,   8,   12,    16,    20,    24,     28,     32,     36,     40, ...]
 2 : [0,  6,  22,   38,    54,    70,    86,    102,    118,    134,    150, ...]
 3 : [0,  8,  40,   92,   144,   196,   248,    300,    352,    404,    456, ...]
 4 : [0, 10,  73,  196,   354,   512,   670,    828,    986,   1144,   1302, ...]
 5 : [0, 12, 112,  376,   760,  1200,  1640,   2080,   2520,   2960,   3400, ...]
 6 : [0, 14, 172,  678,  1554,  2640,  3810,   4980,   6150,   7320,   8490, ...]
 7 : [0, 16, 240, 1136,  2936,  5436,  8272,  11228,  14184,  17140,  20096, ...]
 8 : [0, 18, 335, 1826,  5315, 10674, 17216,  24262,  31473,  38684,  45895, ...]
 9 : [0, 20, 440, 2812,  9136, 19984, 34192,  50248,  67024,  84020, 101016, ...]
10 : [0, 22, 578, 4186, 15188, 36024, 65512, 100488, 138188, 176878, 215854, ...]
...
		

Crossrefs

Antidiagonal sums give A161870.
Cf. A382345 (1-color), A381891 (1-kind), A026820 (1-color, 1-kind).
Cf. A278710.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (n+1)*x^n,
          add(b(n-i*j, min(n-i*j, i-1))*binomial(i+j, j)*x^j, j=0..n/i)))
        end:
    g:= proc(n, k) option remember;
          `if`(k<0, 0, g(n, k-1)+coeff(b(n$2), x, k))
        end:
    A:= (n, k)-> add(add(g(j, h)*g(n-j, k-h), h=0..k), j=0..n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, May 05 2025
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    def calc_w( k , m):
        s = 0
        for p in partitions( m, m=k+1):
            fact = 1
            j = k + 1
            for x in p :
                fact *= binomial( j, p[x]) * (x + 1) ** p[x]
                j -= p[x]
            s += fact
        return s
    def a_row( n, length=11):
        if n == 0 : return [ k + 1 for k in range( length) ]
        t = list( [0] * length)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= calc_w( k, p[k])
            if s > 0 :
                t[s - 1] += fact
        t = [0] + t
        for i in range( 1, length):
            t[i+1] += t[i] * 2 - t[i - 1]
        return t

Formula

A(0,k) = k + 1.
A(1,k) = 4*k.
A(2,k+1) = 6 + 16 * k.
A(n,1) = 2 + 2 * n.
A(n,n+k) = A(n,n) + k * A383352(n,n).
A(n,k) = Sum_{i=0..k} (k + 1 - i) * A383351(n,i) for 0 <= k <= n.
Sum_{k=0..n} (-1)^k*T(n-k,k) = A278710(n). - Alois P. Heinz, May 05 2025

A383617 Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, k of which are picked out, 0 <= k <= n.

Original entry on oeis.org

1, 2, 2, 10, 16, 10, 104, 272, 272, 104, 3044, 11456, 16960, 11456, 3044, 291968, 1432608, 2842304, 2842304, 1432608, 291968, 96928992, 578431232, 1441700480, 1920352256, 1441700480, 578431232, 96928992, 112282908928, 784780122880, 2351993457920, 3918054495616, 3918054495616, 2351993457920, 784780122880, 112282908928
Offset: 0

Author

Peter Dolland, May 02 2025

Keywords

Comments

The row sums are the number of simple digraphs with n 4-colored nodes. The colors result from the four cases combining the property self-referencing (yes/no) with "picked out" (yes/no).

Examples

			Triangle starts:
            1;
            2,            2;
           10,           16,            10;
          104,          272,           272,           104;
         3044,        11456,         16960,         11456,          3044;
       291968,      1432608,       2842304,       2842304,       1432608,  291968;
     96928992,    578431232,    1441700480,    1920352256,    1441700480, ...
 112282908928, 784780122880, 2351993457920, 3918054495616, 3918054495616, ...
...
Example n=2, k=1: The both objects are differentiated. As a consequence all binary relations on two different objects have to be counted: These are the subsets of the cross product of the objects set with itself. This contains four pairs, so the number of subsets is 2^4 = 16.
		

Crossrefs

Cf. A000595 (edge cases), A353996 (row sums), A329874 (4th column = row sums).

Formula

T(n,k) = T(n,n-k).
T(n,0) = T(n,n) = A000595(n).
Sum_{k=0..n} T(n,k) = A353996(n+1) = A329874(n,4).

A383351 Triangle read by rows: T(n, k) is the number of partitions of a 2-colored set of n objects into k parts where 0 <= k <= n, and each part is one of 2 kinds.

Original entry on oeis.org

1, 0, 4, 0, 6, 10, 0, 8, 24, 20, 0, 10, 53, 60, 35, 0, 12, 88, 164, 120, 56, 0, 14, 144, 348, 370, 210, 84, 0, 16, 208, 672, 904, 700, 336, 120, 0, 18, 299, 1174, 1998, 1870, 1183, 504, 165, 0, 20, 400, 1952, 3952, 4524, 3360, 1848, 720, 220
Offset: 0

Author

Peter Dolland, Apr 24 2025

Keywords

Examples

			Triangle starts:
 0 : [1]
 1 : [0,  4]
 2 : [0,  6,  10]
 3 : [0,  8,  24,   20]
 4 : [0, 10,  53,   60,   35]
 5 : [0, 12,  88,  164,  120,   56]
 6 : [0, 14, 144,  348,  370,  210,   84]
 7 : [0, 16, 208,  672,  904,  700,  336,  120]
 8 : [0, 18, 299, 1174, 1998, 1870, 1183,  504,  165]
 9 : [0, 20, 400, 1952, 3952, 4524, 3360, 1848,  720, 220]
10 : [0, 22, 534, 3052, 7394, 9834, 8652, 5488, 2724, 990, 286]
...
		

Crossrefs

Main diagonal gives A000292(n+1).
Partial row sums are A383352.
Cf. A382342 (1-colored), A382339 (1-kind), A008284 (1-colored, 1-kind).

Programs

  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    def calc_w(k , m):
        s = 0
        for p in partitions(m, m=k+1):
            fact = 1
            j = k + 1
            for x in p :
                fact *= binomial(j, p[x]) * (x + 1) ** p[x]
                j -= p[x]
            s += fact
        return s
    def t_row(n):
        if n == 0 : return [1]
        t = list([0] * n)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= calc_w(k, p[k])
            if s > 0 :
                t[s - 1] += fact
        return [0] + t

Formula

T(n,n) = binomial(n + 3, 3) = A000292(n + 1).
T(n,1) = 2*n + 2 for n >= 1.
T(n,k+1) = A383352(n,k+1) - A383352(n,k) for 0 <= k < n.

A383352 Triangle read by rows: T(n, k) is the number of partitions of a 2-colored set of n objects into at most k parts where 0 <= k <= n, and each part is one of 2 kinds.

Original entry on oeis.org

1, 0, 4, 0, 6, 16, 0, 8, 32, 52, 0, 10, 63, 123, 158, 0, 12, 100, 264, 384, 440, 0, 14, 158, 506, 876, 1086, 1170, 0, 16, 224, 896, 1800, 2500, 2836, 2956, 0, 18, 317, 1491, 3489, 5359, 6542, 7046, 7211, 0, 20, 420, 2372, 6324, 10848, 14208, 16056, 16776, 16996
Offset: 0

Author

Peter Dolland, Apr 24 2025

Keywords

Examples

			Triangle starts:
 0 : [1]
 1 : [0,  4]
 2 : [0,  6,  16]
 3 : [0,  8,  32,   52]
 4 : [0, 10,  63,  123,   158]
 5 : [0, 12, 100,  264,   384,   440]
 6 : [0, 14, 158,  506,   876,  1086,  1170]
 7 : [0, 16, 224,  896,  1800,  2500,  2836,  2956]
 8 : [0, 18, 317, 1491,  3489,  5359,  6542,  7046,  7211]
 9 : [0, 20, 420, 2372,  6324, 10848, 14208, 16056, 16776, 16996]
10 : [0, 22, 556, 3608, 11002, 20836, 29488, 34976, 37700, 38690, 38976]
...
		

Crossrefs

Row sums of A383351.
Cf. A381895 (1-color), A381891 (1-kind), A026820 (1-color, 1-kind).

Programs

  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    def calc_w(k , m):
        s = 0
        for p in partitions(m, m=k+1):
            fact = 1
            j = k + 1
            for x in p :
                fact *= binomial(j, p[x]) * (x + 1) ** p[x]
                j -= p[x]
            s += fact
        return s
    def t_row(n):
        if n == 0 : return [1]
        t = list([0] * n)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= calc_w(k, p[k])
            if s > 0 :
                t[s - 1] += fact
        for i in range(n - 1):
            t[i + 1] += t[i]
        return [0] + t

Formula

T(n,k) = Sum_{i=0..k} A383351(n,i).
T(n,1) = 2*n + 2 for n >= 1.

A382522 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of four kinds. Containers may be left empty.

Original entry on oeis.org

1, 4, 0, 10, 4, 0, 20, 16, 4, 0, 35, 40, 26, 4, 0, 56, 80, 80, 32, 4, 0, 84, 140, 180, 124, 42, 4, 0, 120, 224, 340, 320, 184, 48, 4, 0, 165, 336, 574, 660, 535, 248, 58, 4, 0, 220, 480, 896, 1184, 1200, 800, 332, 64, 4, 0, 286, 660, 1320, 1932, 2284, 1956, 1176, 416, 74, 4, 0
Offset: 0

Author

Peter Dolland, Mar 31 2025

Keywords

Examples

			Array starts:
 0 : [1, 4, 10,  20,   35,    56,    84,   120,    165,    220,    286]
 1 : [0, 4, 16,  40,   80,   140,   224,   336,    480,    660,    880]
 2 : [0, 4, 26,  80,  180,   340,   574,   896,   1320,   1860,   2530]
 3 : [0, 4, 32, 124,  320,   660,  1184,  1932,   2944,   4260,   5920]
 4 : [0, 4, 42, 184,  535,  1200,  2284,  3892,   6129,   9100,  12910]
 5 : [0, 4, 48, 248,  800,  1956,  3968,  7088,  11568,  17660,  25616]
 6 : [0, 4, 58, 332, 1176,  3080,  6618, 12364,  20892,  32776,  48590]
 7 : [0, 4, 64, 416, 1616,  4560, 10368, 20280,  35536,  57376,  87040]
 8 : [0, 4, 74, 520, 2187,  6580, 15778, 32196,  58414,  97012, 150570]
 9 : [0, 4, 80, 628, 2848,  9140, 23088, 49172,  92352, 157808, 250720]
10 : [0, 4, 90, 752, 3660, 12440, 33002, 73188, 142160, 249740, 406036]
...
		

Crossrefs

Antidiagonal sums give A023003.
Without empty containers: A382041.
Cf. A382344, A000292, 2 kinds: A382345, 3 kinds: A382521.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*binomial(j+3, 3), j=0..n/i))))
        end:
    A:= (n, k)-> coeff(b(n+k$2), x, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Mar 31 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*Binomial[j+3, 3], {j, 0, n/i}]]]];
    A[n_, k_] := Coefficient[b[n+k, n+k], x, k];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 07 2025, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    def a_row(n, length=11) :
        if n == 0 : return [ binomial( k + 3, 3) for k in range( length) ]
        t = list( [0] * length)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( 3 + p[k], 3)
            if s > 0 :
                t[s] += fact
        a = list( [0] * length)
        for i in range( 1, length):
            for j in range( i, 0, -1):
                a[i] += t[j] * binomial( i - j + 3, 3)
        return a
    for n in range(11): print(a_row(n))

Formula

A(0,k) = binomial(k + 3, 3) = A000292(k + 1).
A(1,k) = 4 * binomial(k + 2, 3).
A(n,1) = 4.
A(n,k) = Sum_{i=0..k} binomial(k + 3 - i, 3) * A382344(n,i) for k <= n.
A(n,k) = A382344(n+k,k).

A382521 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of three kinds. Containers may be left empty.

Original entry on oeis.org

1, 3, 0, 6, 3, 0, 10, 9, 3, 0, 15, 18, 15, 3, 0, 21, 30, 36, 18, 3, 0, 28, 45, 66, 55, 24, 3, 0, 36, 63, 105, 114, 81, 27, 3, 0, 45, 84, 153, 195, 189, 108, 33, 3, 0, 55, 108, 210, 298, 348, 276, 145, 36, 3, 0, 66, 135, 276, 423, 558, 552, 405, 180, 42, 3, 0, 78, 165, 351, 570, 819, 936, 858, 549, 225, 45, 3, 0
Offset: 0

Author

Peter Dolland, Mar 30 2025

Keywords

Examples

			Array starts:
 0 : [1, 3,  6,  10,   15,   21,   28,    36,    45,    55,    66]
 1 : [0, 3,  9,  18,   30,   45,   63,    84,   108,   135,   165]
 2 : [0, 3, 15,  36,   66,  105,  153,   210,   276,   351,   435]
 3 : [0, 3, 18,  55,  114,  195,  298,   423,   570,   739,   930]
 4 : [0, 3, 24,  81,  189,  348,  558,   819,  1131,  1494,  1908]
 5 : [0, 3, 27, 108,  276,  552,  936,  1428,  2028,  2736,  3552]
 6 : [0, 3, 33, 145,  405,  858, 1532,  2427,  3543,  4880,  6438]
 7 : [0, 3, 36, 180,  549, 1248, 2340,  3861,  5811,  8190, 10998]
 8 : [0, 3, 42, 225,  741, 1785, 3510,  6000,  9300, 13410, 18330]
 9 : [0, 3, 45, 271,  957, 2451, 5051,  8967, 14307, 21126, 29424]
10 : [0, 3, 51, 324, 1227, 3312, 7137, 13125, 21552, 32553, 46194]
...
		

Crossrefs

Antidiagonal sums give A000716.
Alternating antidiagonal sums give A107635.
Without empty containers: A382025.
Cf. A382343, A000217, 2 kinds: A382345.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+2)*(j+1)/2, j=0..n/i))))
        end:
    A:= (n, k)-> coeff(b(n+k$2), x, k):
    seq(seq(A(n, d-n), n=0..d), d=0..11);  # Alois P. Heinz, Mar 31 2025
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    def a_row(n, length=11) :
        if n == 0 : return [ binomial( k + 2, 2) for k in range( length) ]
        t = list( [0] * length)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( 2 + p[k], 2)
            if s > 0 :
                t[s] += fact
        a = list( [0] * length)
        for i in range( 1, length):
            for j in range( i, 0, -1):
                a[i] += t[j] * binomial( i - j + 2, 2)
        return a
    for n in range(11): print(a_row(n))

Formula

A(0,k) = binomial(k + 2, 2) = A000217(k + 1).
A(1,k) = 3 * binomial(k + 1, 2).
A(n,1) = 3.
A(n,k) = Sum_{i=0..k} binomial(k + 2 - i, 2) * A382343(n,i) for k <= n.
A(n,k) = A382343(n+k,k).

A382345 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of two kinds. Containers may be left empty.

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 4, 2, 0, 5, 6, 7, 2, 0, 6, 8, 12, 8, 2, 0, 7, 10, 17, 18, 11, 2, 0, 8, 12, 22, 28, 26, 12, 2, 0, 9, 14, 27, 38, 46, 34, 15, 2, 0, 10, 16, 32, 48, 66, 64, 46, 16, 2, 0, 11, 18, 37, 58, 86, 100, 94, 56, 19, 2, 0, 12, 20, 42, 68, 106, 136, 152, 124, 70, 20, 2, 0
Offset: 0

Author

Peter Dolland, Mar 29 2025

Keywords

Examples

			Array starts:
 0 : [1, 2,  3,   4,   5,   6,   7,    8,    9,   10,   11]
 1 : [0, 2,  4,   6,   8,  10,  12,   14,   16,   18,   20]
 2 : [0, 2,  7,  12,  17,  22,  27,   32,   37,   42,   47]
 3 : [0, 2,  8,  18,  28,  38,  48,   58,   68,   78,   88]
 4 : [0, 2, 11,  26,  46,  66,  86,  106,  126,  146,  166]
 5 : [0, 2, 12,  34,  64, 100, 136,  172,  208,  244,  280]
 6 : [0, 2, 15,  46,  94, 152, 217,  282,  347,  412,  477]
 7 : [0, 2, 16,  56, 124, 214, 316,  426,  536,  646,  756]
 8 : [0, 2, 19,  70, 167, 302, 464,  640,  825, 1010, 1195]
 9 : [0, 2, 20,  84, 212, 406, 648,  922, 1212, 1512, 1812]
10 : [0, 2, 23, 100, 271, 542, 899, 1314, 1766, 2236, 2717]
...
		

Crossrefs

Antidiagonal sums give A000712.
Alternating antidiagonal sums give A073252.
Without empty containers: A381895.
Cf. A382342.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+1), j=0..n/i))))
        end:
    A:= (n, k)-> coeff(b(n+k$2), x, k):
    seq(seq(A(n, d-n), n=0..d), d=0..11);  # Alois P. Heinz, Mar 29 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0,
       Sum[x^j*b[n - i*j, Min[n - i*j, i - 1]]*(j + 1), {j, 0, n/i}]]]];
    A[n_, k_] := Coefficient[b[n + k, n + k], x, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Apr 07 2025, after Alois P. Heinz *)
  • Python
    from sympy.utilities.iterables import partitions
    def a_row(n, length=11) -> list[int]:
        if n == 0 : return list(range(1, length + 1))
        t = [0] * length
        for p in partitions(n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= p[k] + 1
            if s > 0 :
                t[s] += fact
        for i in range(1, length - 1):
            t[i+1] += t[i] * 2 - t[i-1]
        return t
    for n in range(11): print(a_row(n))

Formula

A(0,k) = k + 1.
A(1,k) = 2*k.
A(2,k+1) = 2 + 5 * k.
A(n,1) = 2.
A(n,k) = Sum_{i=0..k} (k + 1 - i) * A382342(n,i) for k <= n.
A(n,n+k) = A(n,n) + k * A000712(n).
A(n,k) = A382342(n,k) + 2 * A(n,k-1) - A(n,k-2) for 2 <= k <= n.
A(n,k) = A382342(n+k,k). - Alois P. Heinz, Mar 31 2025

A382344 Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 4 kinds.

Original entry on oeis.org

1, 0, 4, 0, 4, 10, 0, 4, 16, 20, 0, 4, 26, 40, 35, 0, 4, 32, 80, 80, 56, 0, 4, 42, 124, 180, 140, 84, 0, 4, 48, 184, 320, 340, 224, 120, 0, 4, 58, 248, 535, 660, 574, 336, 165, 0, 4, 64, 332, 800, 1200, 1184, 896, 480, 220, 0, 4, 74, 416, 1176, 1956, 2284, 1932, 1320, 660, 286
Offset: 0

Author

Peter Dolland, Mar 28 2025

Keywords

Examples

			Triangle starts:
 0 : [1]
 1 : [0, 4]
 2 : [0, 4, 10]
 3 : [0, 4, 16,  20]
 4 : [0, 4, 26,  40,   35]
 5 : [0, 4, 32,  80,   80,   56]
 6 : [0, 4, 42, 124,  180,  140,   84]
 7 : [0, 4, 48, 184,  320,  340,  224,  120]
 8 : [0, 4, 58, 248,  535,  660,  574,  336,  165]
 9 : [0, 4, 64, 332,  800, 1200, 1184,  896,  480, 220]
10 : [0, 4, 74, 416, 1176, 1956, 2284, 1932, 1320, 660, 286]
...
		

Crossrefs

Main diagonal gives A000292(n+1).
Row sums give A023003.
Cf. A008284 (1-kind), A382342 (2-kind), A382343 (3-kind).

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*binomial(j+3, 3), j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 28 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*Binomial[j+3, 3], {j, 0, n/i}]]]];
    T[n_, k_] := Coefficient[b[n, n], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Aug 07 2025, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    kinds = 4 - 1   # the number of part kinds - 1
    def t_row( n):
        if n == 0 : return [1]
        t = list( [0] * n)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( kinds + p[k], kinds)
            if s > 0 :
                t[s - 1] += fact
        return [0] + t

Formula

T(n,n) = binomial(n + 3, 3) = A000292(n + 1).
T(n,1) = 4 for n >= 1.
T(n,k) = A382041(n,k) - A382041(n,k-1) for 1 <= k <= n.
Sum_{k=0..n} (-1)^k * T(n,k) = A022599(n). - Alois P. Heinz, Mar 28 2025

A382343 Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 3 kinds.

Original entry on oeis.org

1, 0, 3, 0, 3, 6, 0, 3, 9, 10, 0, 3, 15, 18, 15, 0, 3, 18, 36, 30, 21, 0, 3, 24, 55, 66, 45, 28, 0, 3, 27, 81, 114, 105, 63, 36, 0, 3, 33, 108, 189, 195, 153, 84, 45, 0, 3, 36, 145, 276, 348, 298, 210, 108, 55, 0, 3, 42, 180, 405, 552, 558, 423, 276, 135, 66
Offset: 0

Author

Peter Dolland, Mar 27 2025

Keywords

Examples

			Triangle starts:
 0 : [1]
 1 : [0, 3]
 2 : [0, 3,  6]
 3 : [0, 3,  9,  10]
 4 : [0, 3, 15,  18,  15]
 5 : [0, 3, 18,  36,  30,  21]
 6 : [0, 3, 24,  55,  66,  45,  28]
 7 : [0, 3, 27,  81, 114, 105,  63,  36]
 8 : [0, 3, 33, 108, 189, 195, 153,  84,  45]
 9 : [0, 3, 36, 145, 276, 348, 298, 210, 108,  55]
10 : [0, 3, 42, 180, 405, 552, 558, 423, 276, 135, 66]
...
		

Crossrefs

Main diagonal gives A000217(n+1).
Row sums give A000716.
Cf. A008284 (1-kind), A382342 (2-kind).

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+2)*(j+1)/2, j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 27 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*(j+2)*(j+1)/2, {j, 0, n/i}]]]];
    T[n_, k_] := Coefficient[b[n, n], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 30 2025, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    kinds = 3 - 1   # the number of part kinds - 1
    def t_row( n):
        if n == 0 : return [1]
        t = list( [0] * n)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( kinds + p[k], kinds)
            if s > 0 :
                t[s - 1] += fact
        return [0] + t

Formula

T(n,n) = binomial(n + 2, 2) = A000217(n + 1).
T(n,1) = 3 for n >= 1.
T(n,k) = A382025(n,k) - A382025(n,k-1) for 1 <= k <= n.
Sum_{k=0..n} (-1)^k * T(n,k) = A022598(n). - Alois P. Heinz, Mar 27 2025