cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A341241 Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^3.

Original entry on oeis.org

1, 0, 3, 3, 6, 9, 13, 21, 27, 40, 54, 75, 97, 129, 171, 220, 282, 360, 460, 576, 720, 896, 1116, 1374, 1682, 2061, 2517, 3050, 3684, 4449, 5354, 6414, 7656, 9135, 10875, 12891, 15243, 18015, 21243, 24966, 29286, 34326, 40156, 46851, 54573, 63509, 73794, 85551, 99035, 114555
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..52);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax = 52; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &

Formula

G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^3.
a(n) ~ A107635(n). - Vaclav Kotesovec, Feb 20 2021

A339718 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^3.

Original entry on oeis.org

1, -3, -3, 3, -3, 6, -3, -4, 3, 6, -3, -3, -3, 6, 6, 9, -3, -3, -3, -3, 6, 6, -3, 9, 3, 6, -4, -3, -3, -3, -3, -12, 6, 6, 6, 3, -3, 6, 6, 9, -3, -3, -3, -3, -3, 6, -3, -18, 3, -3, 6, -3, -3, 9, 6, 9, 6, 6, -3, -3, -3, 6, -3, 15, 6, -3, -3, -3, 6, -3, -3, -15, -3, 6, -3, -3, 6, -3, -3, -18
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339335(n/d) * a(d).
a(p^k) = A022598(k) for prime p.

A107635 McKay-Thompson series of class 32a for the Monster group.

Original entry on oeis.org

1, 3, 3, 4, 9, 12, 15, 21, 30, 43, 54, 69, 94, 123, 153, 193, 252, 318, 391, 486, 609, 754, 918, 1119, 1376, 1680, 2019, 2432, 2946, 3540, 4220, 5034, 6015, 7157, 8463, 9999, 11835, 13956, 16374, 19206, 22542, 26376, 30750, 35829, 41745, 48526, 56250
Offset: 0

Views

Author

Michael Somos, May 18 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 9*x^4 + 12*x^5 + 15*x^6 + 21*x^7 + ...
T32a = 1/q + 3*q^7 + 3*q^15 + 4*q^23 + 9*q^31 + 12*q^39 + 15*q^47 + ...
		

Crossrefs

Cf. A022598.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^2 / (QPochhammer[ x] QPochhammer[ x^4]))^3, {x, 0, n}]; (* Michael Somos, Jun 29 2014 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^3, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^3, n))};

Formula

Expansion of q^(1/8) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^3 in powers of q.
Expansion of chi(x)^3 = phi(x) / psi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^3 - v) * (v^3 - u) - 9*u*v.
Euler transform of period 4 sequence [3, -3, 3, 0, ...].
G.f.: Product_{k>0} (1 + (-x)^k)^-3.
a(n) = (-1)^n * A022598(n).
a(n) ~ exp(Pi*sqrt(n/2)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018

A022600 Expansion of Product_{m>=1} (1+q^m)^(-5).

Original entry on oeis.org

1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k: A022627 (k=-32), A022626 (k=-31), A022625 (k=-30), A022624 (k=-29), A022623 (k=-28), A022622 (k=-27), A022621 (k=-26), A022620 (k=-25), A007191 (k=-24), A022618 (k=-23), A022617 (k=-22), A022616 (k=-21), A022615 (k=-20), A022614 (k=-19), A022613 (k=-18), A022612 (k=-17), A022611 (k=-16), A022610 (k=-15), A022609 (k=-14), A022608 (k=-13), A007249 (k=-12), A022606 (k=-11), A022605 (k=-10), A022604 (k=-9), A007259 (k=-8), A022602 (k=-7), A022601 (k=-6), this sequence (k=-5), A022599 (k=-4), A022598 (k=-3), A022597 (k=-2), A081362 (k=-1), A000009 (k=1), A022567 (k=2), A022568 (k=3), A022569 (k=4), A022570 (k=5), A022571 (k=6), A022572 (k=7), A022573 (k=8), A022574 (k=9), A022575 (k=10), A022576 (k=11), A022577 (k=12), A022578 (k=13), A022579 (k=14), A022580 (k=15), A022581 (k=16), A022582 (k=17), A022583 (k=18), A022584 (k=19), A022585 (k=20), A022586 (k=21), A022587 (k=22), A022588 (k=23), A014103 (k=24), A022589 (k=25), A022590 (k=26), A022591 (k=27), A022592 (k=28), A022593 (k=29), A022594 (k=30), A022595 (k=31), A022596 (k=32), A025233 (k=48).
Column k=5 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(n) ~ (-1)^n * 5^(1/4) * exp(Pi*sqrt(5*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A382343 Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 3 kinds.

Original entry on oeis.org

1, 0, 3, 0, 3, 6, 0, 3, 9, 10, 0, 3, 15, 18, 15, 0, 3, 18, 36, 30, 21, 0, 3, 24, 55, 66, 45, 28, 0, 3, 27, 81, 114, 105, 63, 36, 0, 3, 33, 108, 189, 195, 153, 84, 45, 0, 3, 36, 145, 276, 348, 298, 210, 108, 55, 0, 3, 42, 180, 405, 552, 558, 423, 276, 135, 66
Offset: 0

Views

Author

Peter Dolland, Mar 27 2025

Keywords

Examples

			Triangle starts:
 0 : [1]
 1 : [0, 3]
 2 : [0, 3,  6]
 3 : [0, 3,  9,  10]
 4 : [0, 3, 15,  18,  15]
 5 : [0, 3, 18,  36,  30,  21]
 6 : [0, 3, 24,  55,  66,  45,  28]
 7 : [0, 3, 27,  81, 114, 105,  63,  36]
 8 : [0, 3, 33, 108, 189, 195, 153,  84,  45]
 9 : [0, 3, 36, 145, 276, 348, 298, 210, 108,  55]
10 : [0, 3, 42, 180, 405, 552, 558, 423, 276, 135, 66]
...
		

Crossrefs

Main diagonal gives A000217(n+1).
Row sums give A000716.
Cf. A008284 (1-kind), A382342 (2-kind).

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+2)*(j+1)/2, j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 27 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*(j+2)*(j+1)/2, {j, 0, n/i}]]]];
    T[n_, k_] := Coefficient[b[n, n], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 30 2025, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    kinds = 3 - 1   # the number of part kinds - 1
    def t_row( n):
        if n == 0 : return [1]
        t = list( [0] * n)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( kinds + p[k], kinds)
            if s > 0 :
                t[s - 1] += fact
        return [0] + t

Formula

T(n,n) = binomial(n + 2, 2) = A000217(n + 1).
T(n,1) = 3 for n >= 1.
T(n,k) = A382025(n,k) - A382025(n,k-1) for 1 <= k <= n.
Sum_{k=0..n} (-1)^k * T(n,k) = A022598(n). - Alois P. Heinz, Mar 27 2025
Showing 1-5 of 5 results.