A341241
Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^3.
Original entry on oeis.org
1, 0, 3, 3, 6, 9, 13, 21, 27, 40, 54, 75, 97, 129, 171, 220, 282, 360, 460, 576, 720, 896, 1116, 1374, 1682, 2061, 2517, 3050, 3684, 4449, 5354, 6414, 7656, 9135, 10875, 12891, 15243, 18015, 21243, 24966, 29286, 34326, 40156, 46851, 54573, 63509, 73794, 85551, 99035, 114555
Offset: 3
Cf.
A000700,
A022598,
A047655,
A107635,
A327381,
A338463,
A341221,
A341243,
A341244,
A341245,
A341246,
A341247,
A341251.
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..52); # Alois P. Heinz, Feb 07 2021
-
nmax = 52; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &
A112150
McKay-Thompson series of class 16a for the Monster group.
Original entry on oeis.org
1, 6, 15, 26, 51, 102, 172, 276, 453, 728, 1128, 1698, 2539, 3780, 5505, 7882, 11238, 15918, 22259, 30810, 42438, 58110, 78909, 106392, 142770, 190698, 253179, 334266, 439581, 575784, 750613, 974316, 1260336, 1624702, 2086530, 2670162, 3406695, 4333590
Offset: 0
G.f. = 1 + 6*x + 15*x^2 + 26*x^3 + 51*x^4 + 102*x^5 + 172*x^6 + 276*x^7 + ...
T16a = 1/q + 6*q^3 + 15*q^7 + 26*q^11 + 51*q^15 + 102*q^19 + 172*x^23 + ...
-
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^6, {x, 0, n}]; (* Michael Somos, Jul 03 2014 *)
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^6, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^6, n))}; /* Michael Somos, Jul 03 2014 */
A244540
Expansion of phi(q) * (phi(q) + phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.
Original entry on oeis.org
1, 3, 3, 2, 3, 4, 2, 0, 3, 5, 4, 2, 2, 4, 0, 0, 3, 6, 5, 2, 4, 0, 2, 0, 2, 7, 4, 4, 0, 4, 0, 0, 3, 4, 6, 0, 5, 4, 2, 0, 4, 6, 0, 2, 2, 4, 0, 0, 2, 3, 7, 4, 4, 4, 4, 0, 0, 4, 4, 2, 0, 4, 0, 0, 3, 8, 4, 2, 6, 0, 0, 0, 5, 6, 4, 2, 2, 0, 0, 0, 4, 7, 6, 2, 0, 8, 2
Offset: 0
G.f. = 1 + 3*q + 3*q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 2*q^6 + 3*q^8 + 5*q^9 + ...
Cf.
A000122,
A000700,
A004018,
A010054,
A033715,
A033761,
A053692,
A093709,
A107635,
A121373,
A244526,
A244543.
-
A := Basis( ModularForms( Gamma1(8), 1), 33); A[1] + 3*A[2] + 3*A[3];
-
a[ n_] := If[ n < 1, Boole[n == 0], Sum[ {3, 0, -1, 0, 1, 0, -3, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
-
{a(n) = if( n<1, n==0, sumdiv(n, d, [0, 3, 0, -1, 0, 1, 0, -3][d%8 + 1]))};
-
{a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * (A + subst(A, x, x^2)) / 2, n))};
-
A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[0] + 3*A[1] + 3*A[2];
A244554
Expansion of phi(q) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.
Original entry on oeis.org
1, 1, -2, 1, 4, -2, 0, 1, -1, 4, -2, -2, 4, 0, 0, 1, 2, -1, -2, 4, 0, -2, 0, -2, 5, 4, -4, 0, 4, 0, 0, 1, -4, 2, 0, -1, 4, -2, 0, 4, 2, 0, -2, -2, 4, 0, 0, -2, 1, 5, -4, 4, 4, -4, 0, 0, -4, 4, -2, 0, 4, 0, 0, 1, 8, -4, -2, 2, 0, 0, 0, -1, 2, 4, -2, -2, 0, 0
Offset: 1
G.f. = q + q^2 - 2*q^3 + q^4 + 4*q^5 - 2*q^6 + q^8 - q^9 + 4*q^10 - 2*q^11 + ...
Cf.
A000122,
A000700,
A004018,
A010054,
A033715,
A033761,
A053692,
A107635,
A121373,
A143259,
A243747,
A244560.
-
A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] + A[3];
-
a[ n_] := If[ n < 1, 0, Sum[ {1, 0, -3, 0, 3, 0, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
-
{a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, 0, -3, 0, 3, 0, -1][d%8 + 1]))};
-
{a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * (A - subst(A, x, x^2)) / 2, n))};
-
A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] + A[2];
A382521
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of three kinds. Containers may be left empty.
Original entry on oeis.org
1, 3, 0, 6, 3, 0, 10, 9, 3, 0, 15, 18, 15, 3, 0, 21, 30, 36, 18, 3, 0, 28, 45, 66, 55, 24, 3, 0, 36, 63, 105, 114, 81, 27, 3, 0, 45, 84, 153, 195, 189, 108, 33, 3, 0, 55, 108, 210, 298, 348, 276, 145, 36, 3, 0, 66, 135, 276, 423, 558, 552, 405, 180, 42, 3, 0, 78, 165, 351, 570, 819, 936, 858, 549, 225, 45, 3, 0
Offset: 0
Array starts:
0 : [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66]
1 : [0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165]
2 : [0, 3, 15, 36, 66, 105, 153, 210, 276, 351, 435]
3 : [0, 3, 18, 55, 114, 195, 298, 423, 570, 739, 930]
4 : [0, 3, 24, 81, 189, 348, 558, 819, 1131, 1494, 1908]
5 : [0, 3, 27, 108, 276, 552, 936, 1428, 2028, 2736, 3552]
6 : [0, 3, 33, 145, 405, 858, 1532, 2427, 3543, 4880, 6438]
7 : [0, 3, 36, 180, 549, 1248, 2340, 3861, 5811, 8190, 10998]
8 : [0, 3, 42, 225, 741, 1785, 3510, 6000, 9300, 13410, 18330]
9 : [0, 3, 45, 271, 957, 2451, 5051, 8967, 14307, 21126, 29424]
10 : [0, 3, 51, 324, 1227, 3312, 7137, 13125, 21552, 32553, 46194]
...
Alternating antidiagonal sums give
A107635.
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+2)*(j+1)/2, j=0..n/i))))
end:
A:= (n, k)-> coeff(b(n+k$2), x, k):
seq(seq(A(n, d-n), n=0..d), d=0..11); # Alois P. Heinz, Mar 31 2025
-
from sympy import binomial
from sympy.utilities.iterables import partitions
def a_row(n, length=11) :
if n == 0 : return [ binomial( k + 2, 2) for k in range( length) ]
t = list( [0] * length)
for p in partitions( n):
fact = 1
s = 0
for k in p :
s += p[k]
fact *= binomial( 2 + p[k], 2)
if s > 0 :
t[s] += fact
a = list( [0] * length)
for i in range( 1, length):
for j in range( i, 0, -1):
a[i] += t[j] * binomial( i - j + 2, 2)
return a
for n in range(11): print(a_row(n))
Showing 1-5 of 5 results.
Comments