A161196
Triangle read by rows generated from A007249, the convolution square root of A007191.
Original entry on oeis.org
1, -12, -12, 66, 144, 66, -232, -792, -792, -232, 639, 2784, 4356, 2784, 639, -1596, -7668, -15312, -15312, -7668, -1596, 3774, 19152, 42174, 53824, 42174, 19152, 3774, -8328, -45288, -105336, -146248, -146248, -105336, -45288, -8328, 17283
Offset: 0
First few rows of the triangle =
1;
-12, -12;
66, 144, 66;
-232, -792, -792, -232;
639, 2784, 4356, 2784, 639;
-1596, -7668, -15312, -15312, -7668, -1596;
3774, 19152, 42174, 53824, 42174, 19152, 3774;
-8328, -45288, -105336, -148248, -148248, -105336, -45288, -8328;
17283, 99936, 249084, 370272, 408321, 370272, 249084, 99936, 17283;
-34520, -207396, -549648, -875568, -1019844, -1019844, -875568, -549648, -207396, -34520;
...
A022577
Expansion of Product_{m>=1} (1+x^m)^12.
Original entry on oeis.org
1, 12, 78, 376, 1509, 5316, 16966, 50088, 138738, 364284, 913824, 2203368, 5130999, 11585208, 25444278, 54504160, 114133296, 234091152, 471062830, 931388232, 1811754522, 3471186596, 6556994502, 12222818640, 22502406793, 40944396120, 73680871326, 131211105208, 231355524048, 404110659732
Offset: 0
G.f. = 1 + 12*x + 78*x^2 + 376*x^3 + 1509*x^4 + 5316*x^5 + 16966*x^6 + ...
G.f. = q + 12*q^3 + 78*q^5 + 376*q^7 + 1509*q^9 + 5316*q^11 + 16966*q^13 + ...
-
Coefficients(&*[(1+x^m)^12:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
-
N:= 50:
G:= mul(1+x^m,m=1..N+1)^12:
S:= series(G,x,N+1):
seq(coeff(S,x,n),n=0..N); # Robert Israel, Feb 26 2018
-
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16 / q)^(1/2) / (1 - m), {q, 0, n}]]; (* Michael Somos, Jul 22 2011 *)
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16 / q) /(1-m)^(1/2), {q, 0, 2 n}]]; (* Michael Somos, Jul 22 2011 *)
CoefficientList[QPochhammer[-1, q]^12/4096+O[q]^30, q] (* Jean-François Alcover, Nov 27 2015 *)
With[{nmax=50}, CoefficientList[Series[Product[(1+q^k)^12, {k,1,nmax}], {q, 0, nmax}],q]] (* G. C. Greubel, Feb 25 2018 *)
-
{a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 + x^k, 1 + x * O(x^n))^12, n))}; /* Michael Somos, Jul 16 2005 */
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^12, n))}; /* Michael Somos, Jul 16 2005 */
-
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^12)) \\ G. C. Greubel, Feb 25 2018
A007247
McKay-Thompson series of class 4B for the Monster group.
Original entry on oeis.org
1, 52, 834, 4760, 24703, 94980, 343998, 1077496, 3222915, 8844712, 23381058, 58359168, 141244796, 327974700, 742169724, 1627202744, 3490345477, 7301071680, 14987511560, 30138820888, 59623576440, 115928963656
Offset: 0
T4B = 1/q + 52*q + 834*q^3 + 4760*q^5 + 24703*q^7 + 94980*q^9 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..5000 (terms 0..500 from Vincenzo Librandi)
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- Claude Duhr and Sara Maggio, Feynman integrals, elliptic integrals and two-parameter K3 surfaces, arXiv:2502.15326 [hep-th], 2025. See p. 12.
- David Ford, John McKay, and Simon Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- John McKay and Hubertus Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Index entries for McKay-Thompson series for Monster simple group
-
a[ n_] := Module[ {m = InverseEllipticNomeQ @ q, e}, e = (1 - m) / (m / 16)^(1/2); SeriesCoefficient[ (e + 64 / e), {q, 0, n - 1/2}]] (* Michael Somos, Jul 11 2011 *)
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ 4 (2 - m)^2 / (m (1 - m)^(1/2)), {q, 0, 2 n - 1}]] (* Michael Somos, Jul 22 2011 *)
QP = QPochhammer; A = (QP[q]/QP[q^2])^12; s = A + 64*(q/A) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from 2nd PARI script *)
nmax = 30; CoefficientList[Series[64*x*Product[(1 + x^k)^12, {k, 1, nmax}] + Product[1/(1 + x^k)^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 01 2017 *)
-
{a(n) = local(A); if( n<0, 0, A = prod( k=1, (n+1)\2, 1 - x^(2*k - 1), 1 + x * O(x^n))^12; polcoeff( A + 64 * x / A, n))} /* Michael Somos, Jul 22 2011 */
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = (eta(x + A) / eta(x^2 + A))^12; polcoeff( A + 64 * x / A, n))} /* Michael Somos, Nov 11 2006 */
-
{ my(q='q+O('q^66), t=(eta(q)/eta(q^2))^12); Vec( t + 64*q/t ) } \\ Joerg Arndt, Apr 02 2017
A112142
McKay-Thompson series of class 8B for the Monster group.
Original entry on oeis.org
1, 12, 66, 232, 639, 1596, 3774, 8328, 17283, 34520, 66882, 125568, 229244, 409236, 716412, 1231048, 2079237, 3459264, 5677832, 9200232, 14729592, 23325752, 36567222, 56778888, 87369483, 133315692, 201825420, 303257512
Offset: 0
1 + 12*x + 66*x^2 + 232*x^3 + 639*x^4 + 1596*x^5 + 3774*x^6 + 8328*x^7 + ...
T8B = 1/q + 12*q + 66*q^3 + 232*q^5 + 639*q^7 + 1596*q^9 + 3774*q^11 + ...
-
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ ((1 - m) m / 16 / q)^(1/2), {q, 0, n}]] (* Michael Somos, Jul 22 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}]^-12, {x, 0, n}] (* Michael Somos, Jul 22 2011 *)
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^12, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
QP = QPochhammer; s = (QP[q^2]^2/(QP[q]*QP[q^4]))^12 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^12, n))}
A022600
Expansion of Product_{m>=1} (1+q^m)^(-5).
Original entry on oeis.org
1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0
Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k:
A022627 (k=-32),
A022626 (k=-31),
A022625 (k=-30),
A022624 (k=-29),
A022623 (k=-28),
A022622 (k=-27),
A022621 (k=-26),
A022620 (k=-25),
A007191 (k=-24),
A022618 (k=-23),
A022617 (k=-22),
A022616 (k=-21),
A022615 (k=-20),
A022614 (k=-19),
A022613 (k=-18),
A022612 (k=-17),
A022611 (k=-16),
A022610 (k=-15),
A022609 (k=-14),
A022608 (k=-13),
A007249 (k=-12),
A022606 (k=-11),
A022605 (k=-10),
A022604 (k=-9),
A007259 (k=-8),
A022602 (k=-7),
A022601 (k=-6), this sequence (k=-5),
A022599 (k=-4),
A022598 (k=-3),
A022597 (k=-2),
A081362 (k=-1),
A000009 (k=1),
A022567 (k=2),
A022568 (k=3),
A022569 (k=4),
A022570 (k=5),
A022571 (k=6),
A022572 (k=7),
A022573 (k=8),
A022574 (k=9),
A022575 (k=10),
A022576 (k=11),
A022577 (k=12),
A022578 (k=13),
A022579 (k=14),
A022580 (k=15),
A022581 (k=16),
A022582 (k=17),
A022583 (k=18),
A022584 (k=19),
A022585 (k=20),
A022586 (k=21),
A022587 (k=22),
A022588 (k=23),
A014103 (k=24),
A022589 (k=25),
A022590 (k=26),
A022591 (k=27),
A022592 (k=28),
A022593 (k=29),
A022594 (k=30),
A022595 (k=31),
A022596 (k=32),
A025233 (k=48).
-
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017
A052241
McKay-Thompson series of class 8C for Monster.
Original entry on oeis.org
1, 26, 79, 326, 755, 2106, 4460, 10284, 20165, 41640, 77352, 147902, 263019, 475516, 816065, 1413142, 2353446, 3936754, 6391091, 10390150, 16497734, 26184098, 40775677, 63394792, 97037170, 148178934, 223351867, 335704742, 499050461, 739575640, 1085723797
Offset: 0
G.f. = 1 + 26*x + 79*x^2 + 326*x^3 + 755*x^4 + 2106*x^5 + 4460*x^6 + ...
T8C = 1/q + 26*q^3 + 79*q^7 + 326*q^11 + 755*q^15 + 2106*q^19 + 4460*q^23 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Michael Somos, Emails to N. J. A. Sloane, 1993
- Index entries for McKay-Thompson series for Monster simple group
-
QP = QPochhammer; A = O[q]^40; A = (QP[q + A]/QP[q^2 + A])^12; s = Sqrt[A + 64*(q/A)]; CoefficientList[s, q] (* Jean-François Alcover, Nov 13 2015, adapted from PARI *)
eta[q_] := q^(1/24)*QPochhammer[q]; e4D := q^(1/2)*(eta[q]/eta[q^2])^12;
T4B := e4D + 64*q/e4D; a[n_]:= SeriesCoefficient[Sqrt[(T4B /. {q -> q^2}) + O[q]^100], {q, 0, n}]; Table[a[n], {n, 0, 50}][[1 ;; ;; 2]] (* G. C. Greubel,Feb 13 2018 *)
a[ n_] := Module[ {m = InverseEllipticNomeQ @ q, A}, A = (1 - m) / (m / 16)^(1/2); SeriesCoefficient[ (A + 64/A)^(1/2), {q, 0, n - 1/4}]]; (* Michael Somos, Sep 30 2019 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x + A) / eta(x^2 + A))^12; polcoeff( sqrt(A + 64 * x / A), n))}; /* Michael Somos, Sep 01 2014 */
A007250
McKay-Thompson series of class 4a for the Monster group.
Original entry on oeis.org
1, -76, -702, -5224, -23425, -98172, -336450, -1094152, -3188349, -8913752, -23247294, -58610304, -140786308, -328793172, -740736900, -1629664840, -3486187003, -7307990208, -14976155896, -30157221352, -59594117256, -115975615160, -222119374922, -419704427016
Offset: 0
G.f. = 1 - 76*x - 702*x^2 - 5224*x^3 - 23425*x^4 - 98172*x^5 - 336450*x^6 + ...
T4a = 1/q - 76*q - 702*q^3 - 5224*q^5 - 23425*q^7 - 98172*q^9 - ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..499 from G. A. Edgar)
- D. Alexander, C. Cummins, J. McKay and C. Simons, Completely replicable functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Index entries for McKay-Thompson series for Monster simple group
-
A022577L := proc(n)
mul((1+x^m)^12,m=1..n+1) ;
taylor(%,x=0,n+1) ;
gfun[seriestolist](%) ;
end proc:
A007249L := proc(n)
if n = 0 then
0 ;
else
mul(1/(1+x^m)^12,m=1..n+1) ;
taylor(%,x=0,n+1) ;
gfun[seriestolist](%) ;
end if;
end proc:
a022577 := A022577L(80) ;
a007249 := A007249L(80) ;
printf("1,");
for i from 1 to 78 do
printf("%d,", op(i+1,a007249)-64*op(i,a022577) );
end do: # R. J. Mathar, Sep 30 2011
-
a[ n_] := Module[ {m = InverseEllipticNomeQ @ q, e}, e = (1 - m) / (m / 16)^(1/2); SeriesCoefficient[ (e - 64 / e) q^(1/2), {q, 0, n}]]; (* Michael Somos, Jul 22 2011 *)
QP = QPochhammer; A = (QP[q]/QP[q^2])^12; s = A - 64*(q/A) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from PARI *)
nmax = 30; CoefficientList[Series[Product[((1-x^k) / (1-x^(2*k)))^12, {k, 1, nmax}] - 64*x*Product[((1-x^(2*k)) / (1-x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2017 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x + A) / eta(x^2 + A))^12; polcoeff( A - 64 * x / A, n))}; /* Michael Somos, Jul 22 2011 */
-
N=66; q='q+O('q^N); t=(eta(q)/eta(q^2))^12; Vec(t - 64*q/t) \\ Joerg Arndt, Mar 11 2017
Showing 1-7 of 7 results.
Comments